Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căn bậc hai số học Căn bậc hai của một số a không âm là số x sao cho \(x^2\) = a. Số dương a có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là \(\sqrt{a}\) và số âm kí hiệu là -√a. Số 0 có đúng một căn bậc hai là chính số 0, ta viết \(\sqrt{0}\) = 0.
Vd :
\(\sqrt{4}=2\)
\(\sqrt{16}=4\)
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)
b) \(\sqrt{2x-3}-7=4\)
\(\sqrt{2x-3}=11\)
\(\left(\sqrt{2x-3}\right)^2=11^2\)
\(2x-3=121\)
\(2x=124\)
\(x=62\)
c) \(\sqrt{3x-2}+7=0\)
\(\sqrt{3x-2}=-7\)
\(\Rightarrow x=\varnothing\)
bạn Hoàng Thanh Huyền ơi! cảm ơn đã là giúp nhưng phần a) bạn làm đến dong thứ 3 thì mk bt làm r nhưng mũ 2 phải chia ra hai trường hợp chứ :))