K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Giải:

Gọi I là giao điểm của hai đường chéo BD và AC.

Theo hình vẽ, ta có:

\(\widehat{BDC}=\widehat{ACD}\)

\(\Rightarrow\Delta DIC\) cân tại I

\(\Rightarrow IC=ID\) (1)

Lại có: \(\widehat{BDC}=\widehat{DBA}\) (Hai góc so le trong của AB//CD)

\(\widehat{ACD}=\widehat{CAB}\) (Hai góc so le trong của AB//CD)

\(\widehat{BDC}=\widehat{ACD}\) (Hình vẽ)

\(\Rightarrow\widehat{DBA}=\widehat{CAB}\)

\(\Leftrightarrow\Delta IAB\) cân tại I

\(\Rightarrow IA=IB\) (2)

Lấy (1) cộng (2), ta được:

\(ID+IB=IC+IA\)

Hay \(BD=AC\)

\(\Rightarrow\) ABCD là hình thang cân ( Vì có hai đường chéo bằng nhau)

Chúc bạn học tốt!

các góc đánh dấu như nhau là những góc nào? bạn phải vẽ hình ra chứ?

31 tháng 7 2017

Bn nhấn vào Đây

31 tháng 7 2017

cm tam giac cân

6 tháng 10 2017

Hình thang có hai cạnh bên bằng nhau chưa chắc là hình thang cân ,vì đó có thể là hình bình hành ,hình chữ nhật .

Mk vẽ hình minh họa :

A B C D

Hình thang ABCD ( AB // CD ) có hai cạnh bên AD = BC

Những ko phải là hình thang cân vì \(\widehat{D}\ne\widehat{C}\)

Hình thang có hai cạnh bên bằng nhau khôn phải là hình thang cân.

A B C D 40 40 60 60 80 80

Ta thấy AB // CD (BAC = ACD)

=> ABCD là hình thang

nhưng ABCD không thể là hình thang cân do D khác BCD (60o khác 120o)

26 tháng 10 2017

pn đăng lại ik, chứ nhìn kiểu này soái cổ chết

26 tháng 10 2017

Câu 6: Tìm giá trị nhỏ nhất của biểu thức : \(A=x^2-2x+2\)

\(A=x^2-2x+2\)

\(A=\left(x^2-2.x.1+1^2\right)+2\)

\(A=\left(x-1\right)^2+2\)

Nhận xét : \(\left(x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow A\ge2\)

Vậy biểu thức A bằng 2 đạt được khi :

\(\left(x-1\right)^2=0\)

\(x-1=0\)

\(x=1\)

1 tháng 9 2019

Mình chỉ biết hình vẽ thôi:

Chúc bạn học tốt!

2 tháng 9 2019

ve hinh toi cung lam dc =))))

a: Xét ΔACB và ΔEBC có

\(\widehat{ACB}=\widehat{EBC}\)

BC chung

\(\widehat{ABC}=\widehat{ECB}\)

Do đó: ΔACB=ΔEBC

b: Ta có: ΔACB=ΔEBC

nên AC=EB

=>BE=BD

hay ΔBED cân tại B

c: Ta có: ΔBED cân tại B

nên \(\widehat{BED}=\widehat{BDC}\)

=>\(\widehat{BDC}=\widehat{ACD}\)

d: Xét ΔACD và ΔBDC có

AC=BD

\(\widehat{ACD}=\widehat{BDC}\)

CD chung

DO đó: ΔACD=ΔBDC

e: Ta có: ΔACD=ΔBDC

nên \(\widehat{DAC}=\widehat{DBC}\)

f: Ta có: ΔACD=ΔBDC

nên \(\widehat{ADC}=\widehat{BCD}\)

=>ABCD là hình thang cân

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

25 tháng 10 2017

Giup cai j ? Cau nao ?

25 tháng 10 2017

Đề số 3.

1.

a,\(4x\left(5x^2-2x+3\right)\)

\(=20x^3-8x^2+12x\)

b.\(\left(x-2\right)\left(x^2-3x+5\right)\)

\(=x^3-3x^2+5x-2x^2+6x-10\)

\(=x^3-5x^2+11x-10\)

c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)

\(=2x^2-x+\dfrac{3}{5}\)

d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)

\(=\left(x-6y\right)^2:\left(x-6y\right)\)

\(=x-6y\)

2.

a,\(x^2+5x+5xy+25y\)

\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)

\(=x\left(x+5\right)+5y\left(x+5\right)\)

\(=\left(x+5y\right)\left(x+5\right)\)

b,\(x^2-y^2+14x+49\)

\(=\left(x^2+14x+49\right)-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7-y\right)\left(x+7+y\right)\)

c,\(x^2-24x-25\)

\(=x^2+25x-x-25\)

\(=\left(x^2-x\right)+\left(25x-25\right)\)

\(=x\left(x-1\right)+25\left(x-1\right)\)

\(=\left(x+25\right)\left(x-1\right)\)

3.

a,\(5x\left(x-3\right)-x+3=0\)

\(5x\left(x-3\right)-\left(x-3\right)=0\)

\(\left(5x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)

b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)

\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)

\(3x^2-15x-2x-3x^2+2+3x=30\)

\(-14x+2=30\)

\(-14x=28\)

\(x=-2\)

c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)

\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)

\(x^2+5x+6-x^2-5x+2x+10=0\)

\(2x+16=0\)

\(2x=-16\)

\(x=-8\)

Mình học chật hình không giúp bạn được.Xin lỗi!

31 tháng 10 2016

sao hok lắm zậy

31 tháng 10 2016

uk đi đi cho đỡ tốn diện tích khi Nam đăg câu hỏi câu trả lời của Nam