Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Gọi quãng đường cần tìm là s.---> vận tốc Xuân= s/12,
--> vận tốc Hạ=s/10
thời gian Xuân gặp Hạ: 50/(s/12)= (s-50)/(s/10)
50x12/s= (s-50)x10/s
50x12=10s-500
---> s = (500+50x12)/10= 110
quãng đường giữa nhà hai bạn là 110m
4.
Khi ngược dòng 1 giờ ta đi được số phần quãng sông là:
1 : 8 = 1/8 (quãng sông)
Khi xuôi dòng 1 giờ ta đi được số phần quãng sông là:
1 : 4 = 1/4 (quãng sông)
Bèo trôi theo ta về 1 giờ trôi được số phần quãng sông là:
(1/4 - 1/8) : 2 = 1/16 (quãng sông)
Bèo trôi theo ta về cập bến sau số giờ là:
1 : 1/16 = 16 (giờ)
Đ/s: 16 giờ
Số cách xếp ngẫu nhiên 12 học sinh thành hàng ngang là 12! cách.
Ta tìm số cách xếp thoả mãn:
Xếp hai bạn An và Bình cạnh nhau có 2! cách, gọi nhóm này là X;
Xếp 4 bạn lớp C còn lại cùng với X có 5! cách;
Lúc này có 4 vị trí (xen giữa các bạn lớp C còn lại và X) để xếp 3 bạn lớp B vào có A34A43cách;
Còn lại 3 vị trí để các bạn lớp A có thể xếp vào (1 vị trí xen giữa và ở hai đầu) có 3.3.3 cách.
Vậy có tất cả 2 ! 5 ! A 4 3 27 cách xếp thoả mãn.
Xác suất cần tính bằng 2 ! 5 ! A 4 3 27 12 ! = 1 3080
Chọn đáp án D.
Tìm số cách xếp ngẫu nhiên:
Chọn ra 6 trong 12 học sinh rồi xếp vào bàn dài có cách xếp;
6 học sinh còn lại xếp vào bàn tròn có (6-1)!=5! cách xếp.
Vậy có tất cả cách xếp ngẫu nhiên.
Ta tìm số cách xếp mà A, B cùng ngồi 1 bàn và ngồi cạnh nhau:
TH1: A, B ngồi cùng bàn dài và cạnh nhau có cách;
TH2: A, B ngồi cùng bàn tròn và cạnh nhau có cách.
Vậy có tất cả cách xếp thoả mãn.
Xác suất cần tính bằng
Chọn đáp án B.
*Chú ý số cách xếp n học sinh vào 1 bàn tròn bằng (n−1)! cách.
Chọn đáp án B.
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Số phần tử của không gian mẫu n(Ω)=10!
Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.
Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:
Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.
Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.
Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9
Vậy số phần tử của A là: n =2–2.9=18432.
Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.
+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.
+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.
+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.
Đáp án B
Chọn D
Xếp ngẫu nhiên 8 học sinh có 8! cách.
"Buộc" Hoàng, Lan, Nam thành một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên ta xem nhóm ba người này là một nam. Vậy có ba nam và ba nữ.
Trường hợp 1: nam ngồi vị trí lẻ.
Xếp 3 nam vào 3 vị trí lẻ: 3!
Xếp 3 nữ vào 3 vị trí chẵn: 3!
Hoán vị hai học sinh nam trong nhóm: 2!
Suy ra số cách xếp trong trường hợp này là: 3!.3!.2!=72 cách
Trường hợp 2: nam ngồi vị trí chẵn
Tương tự có 72 cách
Vậy có 72 + 72 = 144 cách xếp tám học sinh không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam.
Suy ra xác suất cần tìm là P = 144 8 ! = 1 280 .