Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 20 số tự nhiên trên 20 tấm bia lân lượt la: a1, a2,a3,..., a20. Khi ó ta có các tổng sau:
s1= a1
s2= a1+a2
s3=a1+a2+a3
.....
s20= a1+a2+...+a20
Trương hợp 1: Tồn tại một tổng chia hết cho 20 thi bai toán đã được chứng minh
Trương hợp 2: Không có tổng nào chia hết cho 20
Ta thấy khi chia một số cho 7 thì có tất cả 6 số dư từ 0 dến 6 mà có 7 tổng nên tồn tại 2 tổng có cùng số dư suy ra hiệu của 2 tổng đó chia hết cho 20 {( s5- s3 = a1+a2+..+a5) -(a1+a2+a3)= a4+a5}
Vậy có thể chọn ra một hay nhiêu tấm bia mà tổng các số trên dó chia hết cho 20
Gọi số tự nhiên N cần tìm có dạng \(\overline{abcdefg}\). Gọi tổng các chữ số là A
Vì N ko có 2 chữ số nào giống nhau nên:
1+0+2+3+4+5+6\(\le\)A\(\le\)9+7+8+6+5+4+3 hay 21\(\le\)A\(\le\)42
Mà A chia hết cho 7 => A thuộc {21, 28, 35, 42}
Trước tiên xét A =21, Sắp xếp các số a, b, c, d, e, f với các số 0, 1,2, 3, 4, 5,6 thành các số tự nhiên
Theo đề bài N là số tự nhiên nhỏ nhất ta có số đàu tiên 1023456 thử lại thì thấy 1023456 chia hết cho 7
Vì thế ta ko cần xét các trường hợp khác nữa.
Đáp án số tự nhiên N là 1023456
Viết 7 số tự nhiên bất kì mỗi số vào 1 tấm bìa. CMR có thể chọn ra 1 hay nhiều tấm bìa để tổng các số trên chia hết cho 7