Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: SỐ cách xếp là;
5!*6!*2=172800(cách)
b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)
Xếp 2 cuốn sách lý cạnh nhau: \(2!=2\) cách
Xếp 3 cuốn hóa cạnh nhau: \(3!=6\) cách
Xếp 4 cuốn toán cạnh nhau: \(4!=24\) cách
Xếp bộ 3 toán-lý-hóa: \(3!=6\) cách
Theo quy tắc nhân, ta có số cách xếp thỏa mãn là:
\(2.6.24.6=1728\) cách
Xếp 2 cuốn sách lý cạnh nhau: cách
Xếp 3 cuốn hóa cạnh nhau: cách
Xếp 4 cuốn toán cạnh nhau: cách
Xếp bộ 3 toán-lý-hóa: cách
Theo quy tắc nhân, ta có số cách xếp thỏa mãn là:
cách
Xếp 4 bạn nữ: có \(4!\) cách
4 bạn nữ tạo ra 5 khe trống, xếp 2 bạn nam vào 5 khe trống đó: \(A_5^2\) cách
Vậy tổng cộng có \(4!.A_5^2\) cách xếp thỏa mãn
1. Đã giải
2.
Xếp 10 cái bánh thành hàng ngang, 10 cái bánh tạo ra 9 khe trống (mà khe trống này nằm giữa 2 cái bánh)
Đặt 2 vách ngăn vào 9 vị trí nói trên, 2 vách ngăn sẽ chia 10 cái bánh làm 3 phần sao cho mỗi phần có ít nhất 1 cái bánh. Vậy có \(C_9^2\) cách đặt 2 vách ngăn hay có \(C_9^2\) cách chia 10 cái bánh cho 3 người sao cho mỗi người có ít nhất 1 cái bánh.
Không gian mẫu: \(12!\)
Xếp 8 nam: có \(8!\) cách
8 nam tạo thành 9 khe trống, xếp 4 nữ vào 9 khe trống này: \(A_9^4\) cách
\(\Rightarrow8!.A_9^4\) cách
Xác suất: \(P=\dfrac{8!.A_9^4}{12!}=\)
Câu này có thể coi như không giải theo cách gián tiếp được (thực ra là có giải được nhưng ko ai giải kiểu đó hết), nó bao gồm các trường hợp 4 nữ cạnh nhau, 3 nữ cạnh nhau, 2 nữ cạnh nhau, trong đó trường hợp trước còn bao hàm trường hợp sau cần loại trừ nữa
a, Số cách sắp xếp 20 bạn để ngồi vào hàng đầu tiên là: \(A_{60}^{20}\) (cách)
b, Sau khi sắp xếp xong hàng đầu tiên, số cách sắp xếp 20 bạn để ngồi vào hàng thứ hai là: \(A_{40}^{20}\) (cách)
c, Sau khi sắp xếp xong hai hàng đầu, số cách sắp xếp 20 bạn để ngồi vào hàng thứ ba là: \({P_{20}} = 20!\) (cách)
Xếp hàng cho 7 em học sinh: \(7!\) cách
7 em học sinh tạo thành 8 khe trống, xếp 3 thầy cô giáo vào 8 khe trống đó: \(A_8^3\) cách
Vậy có \(7!.A_8^3\) cách xếp sao cho các thầy cô không đứng cạnh nhau