K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

Đáp án D

Số phần tử của không gian mẫu là

Bộ 3 số có tổng chia hết cho 3 sẽ có bộ số dư là .

Trong các số từ 1 đến 60 có 20 số chia hết cho 3, 20 số chia 3 dư 1 và 20 số chia 3 dư 2.

Vậy số cách chọ ra bộ 3 tấm thẻ có tổng các số trên thẻ chia hết cho 3 là

cách

Vậy xác suất cần tính là .

27 tháng 3 2017

10 tháng 3 2019

Đáp án C

Rút ngẫu nhiên 3 thẻ trong 15 thẻ có  C 15 3 cách =>  n ( Ω ) = C 15 3 = 455 .

Gọi X là biến cố “ tổng ba số ghi trên ba thẻ rút được". Khi đó  1 ≤ x , y ≤ 15 x + y + z ⋮ 3

Từ số 1 đến số 15 gồm 5 số chia hết cho 3 (N1), 5 số chia hết cho 3 dư 1 (N2) và 5 số chia hết cho 3 dư 2 (N3).

TH1: 2 số x, y, z thuộc cùng 1 loại N1, N2 hoặc N3 => có  C 5 3 + C 5 3 + C 5 3 = 30 cách.

TH2: 3 số x, y, z mỗi số thuộc 1 loại => có  C 5 1 + C 5 1 + C 5 1 = 125 cách.

=> Số kết quả thuận lợi cho biến cố X là n(X) = 30 + 125 = 155.

Vậy  P = n ( X ) n ( Ω ) = 31 91 .

14 tháng 8 2019

Đáp án C

9 tháng 12 2016

Trước hết ta tính xác suất để rút sao cho được hai thẻ có tổng nhỏ hơn 3. Và chỉ thể tổng bằng 2 với trường hợp hai thẻ đều ghi số 1. Như vậy ta có xác suất là \(\frac{1}{5.5}=\frac{1}{25}\).

Vậy xác suất cần tìm là \(1-\frac{1}{25}=\frac{24}{25}\)

10 tháng 12 2016

bn có thể làm rõ hơn được ko

NV
25 tháng 7 2021

a. Chia các số thành 3 tập hợp:

\(A=\left\{3;6;9;12;15;18\right\}\) gồm 6 số chia hết cho 3

\(B=\left\{1;4;7;10;13;16;19\right\}\) gồm 7 số chia 3 dư 1

\(C=\left\{2;5;8;11;14;17\right\}\) gồm 6 số chia 3 dư 2

Tổng 3 số là 1 số chia hết cho 3 khi (cả 3 số đều thuộc cùng 1 tập) hoặc (3 số thuộc 3 tập khác nhau)

Số cách thỏa mãn:

\(C_6^3+C_7^3+C_6^3+C_6^1.C_7^1.C_6^1=...\)

NV
25 tháng 7 2021

b.

Câu b chắc người ra đề hơi rảnh rỗi?

Chia thành các tập:

\(A_1=\left\{5;10;15\right\}\) gồm 3 số chia hết cho 5

\(B_1=\left\{1;6;11;16\right\}\) 4 số chia 5 dư 1

\(C_1=\left\{2;7;12;17\right\}\) 4 số chia 5 dư 2

\(D_1=\left\{3;8;13;18\right\}\) 4 số

\(E_1=\left\{4;9;14;19\right\}\) 4 số

Tổng 3 số chia hết cho 5 khi (3 số chia hết cho 5), (1 số chia hết cho 5, 1 số dư 1, 1 số dư 4), (1 chia hết, 1 dư 2, 1 dư 3), (2 dư 1, 1 dư 3), (1 dư 1, 2 dư 2), (1 dư 2, 2 dư 4), (2 dư 3, 1 dư 4)

Số cách:

\(C_3^3+C_3^1.C_4^1.C_4^1+C_3^1.C_4^1.C_4^1+4.C_4^2.C_4^1=...\)