Có 5 sách Toán giống nhau, 3 sách lý giống nhau, 2 sách Hóa giống nhau. Chia 10 s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

Số cách chia là:

\(A^7_{10}=604800\left(cách\right)\)

3 tháng 5 2019

Đáp án B

30 quyển sách chia thành 15 bộ gồm :

+) 6 bộ giống nhau gồm 1 Toán- 1 Lý

+) 5 bộ giống nhau gồm 1 Lý – 1 Hóa

+) 4 bộ giống nhau gồm 1 Toán – 1 Hóa

Chọn 6 học sinh trong 15 học sinh để trao bộ Toán- Lý có  C 15 6 cách

Chọn 5 học sinh trong 9 học sinh còn lại để trao bộ Lý- Hóa có C 9 5 cách

Vậy 4 học sinh còn lại sẽ được nhận bộ Toán – Hóa. Vậy có C 15 6 . C 9 5 cách trao thưởng.

21 tháng 10 2019

25 tháng 9 2017

Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.

Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.

Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:

+ 1 “buộc” Toán.

+ 1 “buộc” Lý.

+ 5 quyển Hóa.

Thì sẽ có 7! cách xếp.

Vậy theo quy tắc nhân ta có 7!4!3!=725760  cách xếp.

Chọn C.

11 tháng 3 2018

Chọn B

Không gian mẫu là tập hợp tất cả các cách xếp 4 quyển Toán khác nhau và 4 quyển Hóa giống nhau vào 8 trong 10 ô trống.

Khi đó, 

Gọi A là biến cố: “ Bốn quyển sách Toán xếp cạnh nhau và 4 quyển sách Hóa xếp cạnh nhau ”.

Để xếp 4 quyển sách Toán cạnh nhau và 4 quyển sách Hóa gần nhau trên giá sách 10 ô trống ta xem như có 4 vị trí để xếp

Xếp 4 quyển toán cạnh nhau có 4! cách, xếp 4 quyển Hóa có 1 cách, sau đó xếp 2 bộ đó vào 2 trong 4 vị trí.

Do đó: 

Xác suất để 4 quyển sách Toán cạnh nhau và 4 quyển Hóa cạnh nhau là:

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách 

TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách 

TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách 

Tổng số cách: $A_1+A_2+A_3=3024$ cách 

11 tháng 7 2019

Chọn A.

Lời giải.

Không gian mẫu là số cách chọn 2 phần thưởng trong số 12 phần thưởng

Suy ra số phần tử của không gian mẫu là  Ω = C 12 2 = 66

Gọi A là biến cố ""Bạn An và bạn Bình có phần  thưởng giống nhau"".

Để tìm số phần tử của A, ta làm như sau

Gọi x là cặp số gồm 2 quyển Toán và Vật Lí

y là số cặp gồm 2 quyển Toán và Hóa Học;

z là số cặp gồm 2 quyển Vật Lí và Hóa Học

Ta có hệ phương trình

Suy ra số phần tử của biến cố A là

Ω A = C 3 2 + C 4 2 + C 5 2

Vậy xác suất cần tính  P ( A ) = 19 66