Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là cách. Suy ra
Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.
Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có cách
Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách
Suy ra
Vậy xác suất của biến cố cần tìm là
Chọn A
Số phần tử không gian mẫu:
Gọi A là biến cố: Mỗi toa có ít nhất một khách lên tàu .
Có hai trường hợp:
TH1: Một toa có 3 khách 2 toa còn lại mỗi toa có 1 khách.
Trường hợp này có: (cách).
TH 2: Một toa có 1 khách 2 toa còn lại mỗi toa có 2 khách.
Trường hợp này có:(cách).
Số kết quả thuận lợi của biến cố A là: n(A) = 150(cách).
Xác suất của biến cố A :
Số cách lên toa của 7 người là:
Ta tìm số khả năng thuận lợi của A như sau
Chọn 3 toa có người lên:
Với toa có 4 người lên ta có: cách chọn
Với toa có 2 người lên ta có: cách chọn
Người cuối cùng cho vào toa còn lại nên có 1 cách
Theo quy tắc nhân ta có:
Do đó: .
Chọn A.
Mỗi hành khách có 3 lựa chọn \(\Rightarrow n\left(\Omega\right)=3^{12}\)
Chọn 4 người lên toa 1: \(C_{12}^4\) cách
Còn lại 8 người lên 2 toa còn lại, có \(2^8\) cách
Xác suất: \(\dfrac{C_{12}^4.2^8}{3^{12}}=...\)
Đáp án C.
Gọi là tập tất cả các dãy số trong đó là số toa mà hành khách thứ i lên
+ là tập các cách lên tàu sao cho có 2 toa có 3 người và mỗi toa còn lại 1 người
+ là tập các cách lên tàu sao cho có 2 toa có 2 người và 1 toa có 1 người
là biến cố “Mỗi toa đều có hành khách lên tàu”
Đáp án B
Số cách để 4 vị khách lên tàu là:
Số cách để chọn 3 vị khách lên một toa tàu là
Số cách chọn 1 trong 3 toa là
Vị khách còn lại có 2 cách chọn lên toa tàu
Vậy số cách để 1 trong 3 toa tàu chứa 3 trong 4 vị khách là: 3.4.2=24