K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

dể sml

16 tháng 7 2018

Giải

Giả sử AE là cây cọ cao 30m và BC là cây cọ cao 20m. Nếu gọi khoảng cách từ
gốc E đến con cá D là x (m) thì khoảng cách từ gốc C đến con cá D là: 50 - x (m)

Hai con chim cùng bay một lúc và vồ được cá cùng một lúc nên AD = BD

Theo định lí Pitago ta có:

30\(^2\) + x\(^2\) = 20\(^2\) + (50 – x)\(^2\)

900     + x\(^2\) = 400 + (2500 – 100 . x + x\(^2\))

Từ đó 100 . x = 2000, suy ra x = 20 (m)

Vậy con cá cách gốc cây cọ cao 30m là 20m

19 tháng 8 2019

Do hai con chim vồ mồi cùng 1 lúc và với cùng một vận tốc nên quãng đường bay của 2 con pải như nhau

Gọi khoảng cách của con cá tới 2 gốc cây lần lượt là x,y(x,y>0)

Khoảng cách bay của con 1 là : \(\sqrt{20^2+x^2}\)\

Khoảng cách bay của con thứ 2 là \(\sqrt{30^2+y^2}\)

Do khoảng cách bằng nhau nên ta có pt:

\(\sqrt{30^2+y^2}=\sqrt{20^2+x^2}\)

\(\Leftrightarrow500=x^2-y^2=\left(x+y\right)\left(x-y\right)\)

\(\Leftrightarrow500=50\left(x-y\right)\)(do x+y=50)

\(\Leftrightarrow x-y=10\)

\(\Rightarrow\hept{\begin{cases}x+y=50\\x-y=10\end{cases}\Rightarrow x=30,y=20}\)

Vậy con trên cây cao 30 m có gốc cây cách con cá 20m

      con trên cây cao 20m có gốc cây cách con cá 30m

Câu 1.a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì...
Đọc tiếp

Câu 1.

a) Giải phương trình sau: x/2(x-3)+x/2(x+1)= 2x/ (x+1)(x-3)

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: 1-5x/ x-1 lớn hơn hoặc bằng 1

Câu 2. Giải bài toán bằng cách lập phương trình: Một ô tô dự định đi từ A đến B trong khoảng thời gian nhất định với vận tốc định trước. Nếu ô tô đi với vận tốc 35 km/h thì sẽ đi chậm hơn 2 giờ. Nếu đi với vận tốc 50 km/h thì đến sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định lúc đầu.

Câu 3. Cho ABC vuông cân tại A. Trên AB lấy điểm M, kẻ BD CM, BD cắt CA ở E. Chứng minh rằng:

a) BE . DE = AE . CE

b) BD . BE + AC . EC = BC^2

c) góc ADE = 45 độ

Câu 4. Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh căn 3 và góc BAD= 60 độ . Đường thẳng qua B và giao điểm O của hai cạnh đường chéo hình thoi ABCD vuông góc mặt phẳng (ABCD). Biết BB’ = căn 3 . Tính thể tích hình hộp chữ nhật.

Câu 5. Cho x,y,z là các số thực thỏa mãn 2(y^2+yz+z^2)+3x^2=36 . Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x+y+z

1

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)ĐK : \(x\ne3;-1\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

Khử mẫu ta đc : \(x^2+x+2x^2-6x=4x\)

\(3x^2-5x-4x=0\Leftrightarrow3x^2-9x=0\Leftrightarrow x\left(3x-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\left(ktm\right)\end{cases}}\)