Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Số phần tử của không gian mẫu:
Gọi A là biến cố “nhóm được chọn có cả nam và nữ, đồng thời mỗi khối có 1 học sinh nam”
⇒ số phần tử của biến cố A là:
.
Đáp án B.
Số cách chọn 5 em học sinh từ 8 học sinh trên là cách
- Để chọn 5 em thỏa mãn bài ra, ta xét các trường hợp sau
+) 1 nam khối 11, 1 nữ khối 12 và 3 nam khối 12 có cách
+) 1 nam khối 11, 2 nữ khối 12 và 2 nam khối 12 có cách
+) 2 nam khối 11, 1 nữ khối 12 và 2 nam khối 12 có cách
+) 2 nam khối 11, 2 nữ khối 12 và 1 nam khối 12 có cách
- Số cách chọn 5 em thỏa mãn bài ra là:
cách
Vậy xác suất cần tính là:
Đáp án A
Lấy 8 học sinh trong 19 học sinh có C 19 8 = 75582 cách.
Suy ra số phân tử của không gian mẫu là n ( Ω ) = 75582
Gọi X là biến cố “8 học sinh được chọn có đủ 3 khối”
Xét biến cố đối của biến cố X gồm các trường hợp sau:
+ 8 học sinh được chọn từ 2 khối, khi đó có C 14 8 + C 11 8 + C 13 8 cách.
+ 8 học sinh được chọn từ 1 khối, khi đó có C 8 8 cách.
Do đó, số kết quả thuận lợi cho biển cổ X là n ( X ) = C 19 8 - ( C 14 8 + C 11 8 + C 13 8 + C 8 8 ) = 71128 .
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = 71128 75582 .
Đáp án D
Chọn 4 học sinh bất kỳ có: Ω = C 13 4 = 715
Gọi A là biến cố: “4 học sinh được chọn có đủ 3 khối”
Khi đó
Chọn D
Số cách chọn 6 học sinh từ 15 học sinh là C 15 6 = 5005(cách)
⇒ n ( Ω ) = 5005
Gọi biến cố A: “Chọn được 6 học sinh đủ 3 khối”
=> A ¯ : “Chọn được 6 học sinh không đủ 3 khối”.
Cách 1
+ Trường hợp 1: Chọn 6 học sinh từ 1 khối 1 => Chọn 6 học sinh khối 10 có C 6 6 = 1 (cách).
+ Trường hợp 2: 6 học sinh được chọn trong 2 khối.
* Chọn 6 học sinh trong khối 11 và khối 12 có (cách).
* Chọn 6 học sinh trong khối 10 và khối 12 có (cách)
* Chọn 6 học sinh trong khối 11 và khối 10 có (cách).
Từ 2 trường hợp suy ra
.0
Cách 2
+ Trường hợp 1: Chọn 6 học sinh từ 1 khối => Chọn 6 học sinh khối 10 có C 6 6 = 1 (cách).
+ Trường hợp 2: 6 học sinh được chọn trong 2 khối có
Từ 2 trường hợp suy ra
Không gian mẫu là chọn ngẫu nhiên 5 học sinh từ 12 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 5 học sinh được chọn có 3 học sinh nam và 2 học sinh nữ trong đó phải nhất thiết có bạn An hoặc bạn Hoa nhưng không có cả hai . Ta mô tả các trường hợp thuận lợi cho biến cố A như sau:
● Trường hợp 1. Có bạn An.
Chọn thêm 2 học sinh nam từ 6 học sinh nam, có cách.
Chọn 2 học sinh nữ từ 4 học sinh nữ (không chọn Hoa), có cách.
Do đó trường hợp này có cách.
● Trường hợp 2. Có bạn Hoa.
Chọn thêm 1 học sinh nữ từ 4 học sinh nam, có cách.
Chọn 3 học sinh nam từ 6 học sinh nam (không chọn An), có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
Vậy xác suất cần tính
Chọn C.
Đáp án D
Phương pháp:
+ ) P ( A ) = n ( A ) n ( Ω )
+ P(A) = 1P( A )
Cách giải: Số phần tử của không gian mẫu: n ( Ω ) = C 18 6
Gọi A: “Mỗi khối có ít nhất 1 học sinh được chọn.”
Đáp án: D.
Số cách chọn 3 học sinh có cả nam và nữ là
.
Do đó xác suất để 3 học sinh được hcọn có cả nam và nữ là .
Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12
Ta có các trường hợp thuận lợi cho biến cố A là:
● Trường hợp 1. Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có cách.
● Trường hợp 2. Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có cách.
● Trường hợp 3. Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có cách.
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn D.