K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Đáp án B

Có  n ( Ω ) = C 12 3

Giả sử chọn 3 người có số thứ tự trong hàng lần lượt là a, b, c

Theo giả thiết ta có: a < b < c, b – a > 1, c – b > 1,  a ,   b ,   c ∈ { 1 ,   2 , . . . , 12 } .

27 tháng 8 2017

Không gian mẫu là kết quả của việc sắp xếp 10 người theo 1 thứ tự.

⇒ n(Ω) = P10 = 10! = 3 628 800.

a) Gọi M: “A và B đứng liền nhau”

* Coi A và B là một phần tử X.

Số cách xếp X và 8 người khác thành hàng dọc là: 9!

Số cách xếp hai người A và B là: 2!= 2 cách

Theo quy tắc nhân có: 9!.2= 725760 cách xếp thỏa mãn

Xác suất của biến cố M là: Giải bài 7 trang 179 sgk Đại số 11 | Để học tốt Toán 11

b) Gọi N: “Trong hai người đó có một người đứng ở vị trí số 1 và một người kia đứng ở vị trí cuối cùng”.

+ Sắp xếp vị trí cho A và B: Có 2 cách

+ Sắp xếp vị trí cho 8 người còn lại: có 8! cách

⇒ Theo quy tắc nhân: n(N) = 2.8!

Giải bài 7 trang 179 sgk Đại số 11 | Để học tốt Toán 11

10 tháng 12 2019

Chọn C

Ta có: 

Gọi A là biến cố “trong 3 người được chọn đó không có 2 người ngồi kề nhau”

=> A ¯ là biến cố “trong 3 người đươc chọn có ít nhất 2 người ngồi kề nhau”

TH 1: 3 người ngồi kề nhau có 13 cách chọn.

TH 2: có 2 người ngồi cạnh nhau

- Hai người ngồi cạnh nhau ngồi đầu hàng có 2 cách chọn, với mỗi cách chọn như vậy có 12 cách chọn người còn lại vậy có: 2.12=24 cách.

- Hai người ngồi cạnh nhau không ngồi đầu hàng có 12 cách chọn, với mỗi cách chọn như vậy có 11 cách chọn người còn lại vậy có: 11.12=132 cách.

20 tháng 12 2019

Đáp án C.

11 tháng 11 2017

Chọn D

Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu 

Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.

+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có  11 ! 2 ! cách

+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3  cách.

Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra  

Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:

29 tháng 12 2021

lỗi rồi 

29 tháng 12 2021

9 tháng 3 2019

Chọn D

Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó

bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu

tiên chọn 2 vị trị trí xếp vách ngăn là  C 14 2 , 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là  C 14 2 .12!.

Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A

Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng

như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là  C 11 2 sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là  C 11 2 .9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A 12 3 .

Vậy số cách thỏa mãn biến cố A là . C 11 2 .9!. A 12 3

Vậy .

NV
9 tháng 1

a.

Xếp 4 bạn nữ cạnh nhau: \(4!\) cách

Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách

Theo quy tắc nhân ta có: \(4!.7!\) cách

b.

Xếp 6 bạn nam: \(6!\) cách

6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách

\(\Rightarrow6!.C_7^4\) cách

c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)

d. 

Xếp 4 nữ cạnh nhau: \(4!\) cách

Xếp 6 nam cạnh nhau: \(6!\) cách

Hoán vị nhóm nam và nữ: \(2!\) cách

\(\Rightarrow4!.6!.2!\) cách

8 tháng 12 2017

Số khả năng chọn ngẫu nhiên 3 người từ 6*2= 12 người là C 12 3 = 220

b. Gọi B là biến cố :” trong 3 người được chọn không có cặp vợ chồng nào” thì  B ¯ là biến cố :” có đúng một cặp vợ chồng trong ba người được chọn”

( vì có 3 cách chọn cặp vợ chồng, và 10 cách chọn người thứ 3 trong số 10 người còn lại) nên

Chọn D

14 tháng 12 2022

\(n\left(\Omega\right)=C^4_{10}=210\)

A: "Không chọn được hai chiếc nào tạo thành một đôi".

\(\overline{A}\): "Chọn được ít nhất hai chiếc tạo thành một đôi".

\(n\left(\overline{A}\right)=C^1_5\cdot C_8^2=140\).

\(n\left(A\right)=210-140=70\).

\(P\left(A\right)=\dfrac{70}{210}=\dfrac{1}{3}\).