Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo bài tương tự tại đây nhé:
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath
Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.
Chọn B và C là hai bạn không quen nhau trong nhóm này.
Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.
Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất 67 người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là 32
Trong phòng còn lại 68 người. \(\Rightarrow\)gọi B là 1 người quen A \(\Rightarrow\) có nhiều nhất 32 người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là 34 \(\Rightarrow\)gọi C là 1 người quen A và B \(\Rightarrow\) C không quen nhiều nhất 32 người trong phòng
\(\Rightarrow\)trong phòng còn lại 44 người \(\Rightarrow\)ngoài A,B,CA,B,C còn 1 người giả sử là D,khi đó A,B,C,DA,B,C,D đôi 1 quen nhau(đpcm)