Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2 cách ⇒ n ( Ω ) = C 9 2
Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”
Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ => có C 5 2 cách => n ( X ) = C 5 2 .
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = C 5 2 C 9 2 = 5 18 .
a. Không gian mẫu: \(C_{10}^3\)
Số cách chọn 3 số nguyên liên tiếp: 8 cách (123; 234;...;8910)
Số cách chọn ra 3 số trong đó có đúng 2 số nguyên liên tiếp:
- Cặp liên tiếp là 12 hoặc 910 (2 cách): số còn lại có 7 cách chọn
- Cặp liên tiếp là 1 trong 7 cặp còn lại: số còn lại có 6 cách chọn
Vậy có: \(C_{10}^3-\left(8+2.7+7.6\right)=56\) bộ thỏa mãn
Xác suất: \(P=\dfrac{56}{C_{10}^3}=...\)
b.
Có 2 số chia hết cho 4 là 4 và 8
Rút ra k thẻ: \(C_{10}^k\) cách
Số cách để trong k thẻ có ít nhất 1 thẻ chia hết cho 4: \(C_{10}^k-C_8^k\)
Xác suất thỏa mãn: \(P=\dfrac{C_{10}^k-C_8^k}{C_{10}^k}>\dfrac{13}{15}\)
\(\Leftrightarrow\dfrac{2}{15}>\dfrac{C_8^k}{C_{10}^k}=\dfrac{\dfrac{8!}{k!\left(8-k\right)!}}{\dfrac{10!}{k!\left(10-k\right)!}}=\dfrac{\left(9-k\right)\left(10-k\right)}{90}\)
\(\Leftrightarrow\left(9-k\right)\left(10-k\right)-12< 0\Leftrightarrow k^2-19k+78< 0\)
\(\Rightarrow6< k< 13\)
Không gian mẫu: \(C_{15}^5\)
Tổng số 5 tấm thẻ là lẻ khi số số thẻ lẻ là 1 số lẻ, gồm các trường hợp: (1 thẻ lẻ, 4 thẻ chẵn), (3 thẻ lẻ, 2 thẻ chẵn), (5 thẻ đều lẻ)
Trong 15 tấm thẻ có 7 thẻ chẵn và 8 thẻ lẻ
\(\Rightarrow\) Số biến cố thuận lợi: \(C_8^1.C_7^4+C_8^3.C_7^2+C_8^5\)
Xác suất: ...
Gọi T là biến cố "Lấy được thẻ có ghi số chia hết cho 3".
\(\left|\Omega\right|=C^2_{17}\)
TH1: Lấy được 1 thẻ có ghi số chia hết cho 3.
\(\Rightarrow\) Có \(C^1_5.C^1_{12}\) cách lấy.
TH2: Lấy được 2 thẻ có ghi số chia hết cho 3.
\(\Rightarrow\) Có \(C^2_5\) cách lấy.
\(\Rightarrow\left|\Omega_T\right|=C^1_5.C^1_{12}+C^2_5\)
\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^1_5.C^1_{12}+C^2_5}{C^2_{17}}=\dfrac{35}{68}\)
Số phần tử của không gian mẫu:
n Ω = C 11 6 = 462
Gọi A:”tổng số ghi trên 6 tấm thẻ ấy là một số lẻ”.
Từ 1 đến 11 có 6 số lẻ và 5 số chẵn.Để có tổng là một số lẻ ta có 3 trường hợp.
Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 5 thẻ mang số chẵn có: 6 . C 5 5 = 6 cách.
Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 3 thẻ mang số chẵn có: C 6 3 . C 5 3 = 200 cách.
Trường hợp 2: Chọn được 5 thẻ mang số lẻ và 1 thẻ mang số chẵn có: C 6 5 . 5 = 30 cách.
Do đó n(A)= 6+200+30=236.
Vậy P A = 236 462 = 118 231
Chọn đáp án D.
Số phần tử của không gian mẫu là .
Gọi A:”tổng số ghi trên 6 tấm thẻ ấy là một số lẻ”.
Từ 1 đến 11 có 6 số lẻ và 5 số chẵn.Để có tổng là một số lẻ ta có 3 trường hợp.
Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 5 thẻ mang số chẵn có: cách.
Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 3 thẻ mang số chẵn có: cách.
Trường hợp 2: Chọn được 5 thẻ mang số lẻ và 1 thẻ mang số chẵn có: cách.
Do đó n(A)=6+200+30=236
Vậy .
Chọn D.
Đáp án D
Từ 1 đến 10 có 5 số lẻ, 5 số chẵn.
Tích 2 số lẻ là một số lẻ do đó: