Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(\frac{18\sqrt{2}}{3}=6\sqrt{2}\)
đặt mẫu số = Pain
áp dụng BDT cô si shaw ta có
\(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{9}{Pain}\)
áp dụng BDT cô si ta có ( thêm 2)
\(\sqrt{2x\left(y+z\right)}\le\frac{\left(2x+y+z\right)}{2}\)
\(\sqrt{2y\left(z+x\right)}\le\frac{\left(2y+z+x\right)}{2}\)
\(\sqrt{2z\left(x+y\right)}\le\frac{\left(2z+x+y\right)}{2}\)
+ lại và rút cái căn 2 ở VT và Tính VP ta được
\(\sqrt{2}\left(Pain\right)\le\frac{4}{2}\left(x+y+z\right)\) (x+y+z=18 căn 2)
\(\sqrt{2}\left(Pain\right)\le2\left(18.\sqrt{2}\right)\) ( rút gọn căn 2 với căn 2 )
\(Pain\le36\)
vì Pain năm ở dưới mẫu suy ra dấu \(\le\) thành dấu \(\ge\)
thay vào ta được
\(\frac{9}{Pain}\ge\frac{9}{36}=\frac{1}{4}\)
Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{1+x^2}=a-x\\\sqrt{1+y^2}=b-y\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2-2ax+x^2\\1+y^2=b^2-2by+y^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{a^2-1}{2a}\\y=\frac{b^2-1}{2b}\end{matrix}\right.\)
Thay vào biểu thức điều kiện đề bài:
\(\left(\frac{a^2-1}{2a}+\sqrt{1+\left(\frac{b^2-1}{2b}\right)^2}\right)\left(\frac{b^2-1}{2b}+\sqrt{1+\left(\frac{a^2-1}{2a}\right)^2}\right)=1\)
\(\Leftrightarrow\left(\frac{a^2-1}{2a}+\sqrt{\left(\frac{b^2+1}{2b}\right)^2}\right)\left(\frac{b^2-1}{2b}+\sqrt{\left(\frac{a^2+1}{2a}\right)^2}\right)=1\)
\(\Leftrightarrow\left(\frac{a^2-1}{2a}+\frac{b^2+1}{2b}\right)\left(\frac{b^2-1}{2b}+\frac{a^2+1}{2a}\right)=1\)
Với chú ý rằng: \(1=\frac{4ab}{4ab}=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)
\(\Rightarrow\left[\frac{\left(a+b\right)}{2}-\left(\frac{1}{2a}-\frac{1}{2b}\right)\right]\left[\frac{a+b}{2}+\left(\frac{1}{2a}-\frac{1}{2b}\right)\right]=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)
\(\Leftrightarrow\left(a+b\right)^2-\left(\frac{1}{a}-\frac{1}{b}\right)^2=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{ab}\)
\(\Leftrightarrow\left(a+b\right)^2-\frac{\left(a-b\right)^2}{\left(ab\right)^2}=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-\frac{1}{ab}\right)+\frac{\left(a-b\right)^2}{ab}\left(1-\frac{1}{ab}\right)=0\)
\(\Leftrightarrow\left(1-\frac{1}{ab}\right)\left[\left(a+b\right)^2+\frac{\left(a-b\right)^2}{ab}\right]=0\)
\(\Leftrightarrow1-\frac{1}{ab}=0\)
\(\Leftrightarrow ab=1\) (đpcm)