\(CMR:x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

ta co  3(x2+y2+z2)-3(x+y+z)<=4

de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2

ap dung bat dang thuc ta co

3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)

=>(x+y+z)2-3(x+y+z)-4<=0

=>(x+y+z+1)(x+y+z-4)<=0

=>-1<=x+y+z=<4 (dpcm)

3 tháng 3 2018

ta co  3(x2+y2+z2)-3(x+y+z)<=4

de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2

ap dung bat dang thuc ta co

3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)

=>(x+y+z)2-3(x+y+z)-4<=0

=>(x+y+z+1)(x+y+z-4)<=0

=>-1<=x+y+z=<4 (dpcm)

20 tháng 6 2017

Xét vế 1 ta có: \(\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{y}\) \(=\frac{yz+yx}{xz}+\frac{z+x}{y}\)

\(=\frac{y^2z+y^2x+x^2z+xz^2}{xyz}\)nhóm hạng tử 1 với 4,2 với 3 trên tử ta được:

\(=\frac{z\left(y^2+xz\right)+x\left(y^2+xz\right)}{xyz}\)\(=\frac{\left(z+x\right)\left(y^2+xz\right)}{xyz}=\frac{z+x}{zx}\times\frac{y^2+xz}{y}\)(1);

Xét vế 2 ta có:  \(=1+\frac{x}{z}+\frac{z}{x}+1=2+\frac{x}{z}+\frac{z}{x}\)nhân 2 đa thức với nhau:

\(=\frac{2xz}{xz}+\frac{x^2+z^2}{xz}\)\(=\frac{x^2+2xz+z^2}{xz}\)\(=\frac{\left(x+z\right)^2}{xz}=\frac{z+x}{xz}\times\frac{z+x}{1}\)(2)

Từ (1) và (2),ta có: vế 1 = vế 1; mà\(\frac{y^2+xz}{y}< y+\frac{xz}{y}< x+z\)

Suy ra điều phải chứng minh...

29 tháng 8 2017

cha ôi rk mà cx ko bt

3 tháng 10 2017

khó vcl

28 tháng 1 2020

\(RHS=\Sigma\frac{1}{\left(x+1\right)^2+y^2+1}=\Sigma\frac{1}{x^2+y^2+2x+2}\le\Sigma\frac{1}{2xy+2x+2}\)

\(=\frac{1}{2}\left(\frac{1}{xy+x+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mình nghe nói \(\frac{1}{xy+x+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=1\) với \(xyz=1\) đó bạn

Chớ mình gà mình không biết chứng minh đâu,còn cái đoạn đánh giá dưới mẫu đầu tiên đó hình như là BĐT Côsi đó bạn.

hình như dấu "=" xảy ra tại x=y=z=1

31 tháng 8 2016

10 

có bài tuong tự rồi nhé

17 tháng 8 2017

Câu a :

\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)

Câu b :

\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)

Tương tự bạn khai triển là ra nhé

17 tháng 8 2017

a) \(\left(x-1\right)\left(x^2+x+1\right)\)

=\(x^3+x^2+x-x^2-x-1=x^3-1\)

\(\RightarrowĐPCM\)

b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

4 tháng 12 2016

\(\frac{\left(z-x\right)+\left(x-y\right)+\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)