\(CMR:x^6+x^4-2x^2⋮72vớix\in Z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

Có (a-b)^2 >=0

<=> a^2 + b^2 >= 2ab (1) ( với mọi a,b)

Tương tự có b^2 + c^2 >= 2bc(2)

                    c^2 + a^2 >= 2ca(3)

Cộng vế theo vế của (1),(2) và (3) ta có : 2.(a^2+b^2+c^2)>= 2.(ab+bc+ca)

<=> 2.(a^2+b^2+c^2) +a^2+b^2+c^2 >= a^2+b^2+c^2+2.(ab+bc+ca)

<=>3.(a^2+b^2+c^2)>= (a+b+c)^2

<=> a^2+b^2+c^2 >= (a+b+c)^2/3

Áp dụng bđt trên thì x^2+y^2+z^2 >= (x+y+z)^2/3 = 1/3 => ĐPCM

Dấu "=" xảy ra <=> x=y=z=1/3

9 tháng 11 2017

ta co  3(x2+y2+z2)-3(x+y+z)<=4

de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2

ap dung bat dang thuc ta co

3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)

=>(x+y+z)2-3(x+y+z)-4<=0

=>(x+y+z+1)(x+y+z-4)<=0

=>-1<=x+y+z=<4 (dpcm)

3 tháng 3 2018

ta co  3(x2+y2+z2)-3(x+y+z)<=4

de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2

ap dung bat dang thuc ta co

3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)

=>(x+y+z)2-3(x+y+z)-4<=0

=>(x+y+z+1)(x+y+z-4)<=0

=>-1<=x+y+z=<4 (dpcm)

28 tháng 9 2016

Ta có:

\(B=\frac{2x^3+x^2+2x+4}{2x+1}=\frac{x^2.\left(2x+1\right)+2x+1+3}{2x+1}\)

\(B=\frac{\left(2x+1\right).\left(x^2+1\right)+3}{2x+1}\)

\(B=\frac{\left(2x+1\right).\left(x^2+1\right)}{2x+1}+\frac{3}{2x+1}\)

\(B=x^2+1+\frac{3}{2x+1}\)

Do x nguyên nên x2 + 1 nguyên

Để B nguyên thì \(\frac{3}{2x+1}\) nguyên

\(\Rightarrow3⋮2x+1\)

\(\Rightarrow2x+1\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow2x\in\left\{0;-2;2;-4\right\}\)

\(\Rightarrow x\in\left\{0;-1;1;-2\right\}\)

Vậy \(x\in\left\{0;-1;1;-2\right\}\)

NV
2 tháng 10 2019

\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\)

\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

Cộng vế với vế các BĐT trên:

\(3x^2+3y^2+3z^3+3\ge2\left(x+y+z+xy+yz+zx\right)=12\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{12-3}{3}=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
23 tháng 5 2020

Với mọi x;y;z ta luôn có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

\(A=\dfrac{3x^2-9x+x-3+2}{x-3}\)

\(B=\dfrac{x^2\left(x+2\right)+5\left(x+2\right)}{\left(x+2\right)^2}=\dfrac{x^2+5}{x+2}=x-2+\dfrac{9}{x+2}\)

Để A và B cùng là số nguyên thì

\(\left\{{}\begin{matrix}x-3\in\left\{1;-1;2;-2\right\}\\x+2\in\left\{1;-1;3;-3;9;-9\right\}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x\in\left\{4;2;5;1\right\}\\x\in\left\{-1;-3;1;-5;7;-11\right\}\end{matrix}\right.\)

hay x=1

7 tháng 6 2017

a, \(A=\dfrac{2x^3+x^2+2x+4}{2x+1}\\ =\dfrac{2x^3+x^2+2x+1+3}{2x+1}\\ =\dfrac{\left(2x+1\right)\left(x^2+1\right)+3}{2x+1}\\ =x^2+1+\dfrac{3}{2x+1}\)

Để \(A\in Z\) thì \(2x+1\inƯ\left(3\right)\)= \(\left\{\pm1;\pm3\right\}\)

=> \(2x\in\left\{-4;-2;0;2\right\}\) \(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)

b, Để A vô nghĩa thì 2x+1=0 \(\Leftrightarrow\)x=\(\dfrac{-1}{2}\)

7 tháng 6 2017

ths nha

3 tháng 7 2018

a/ +) \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\)\(\left(1\right)\)

+) \(\dfrac{y}{3}=\dfrac{z}{5}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

Vậy ..

b/ \(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Theo t/c dãy tỉ số bằng nhau tcos :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)

Vậy..

c/ tương tự

3 tháng 7 2018

bạn có thể giải cho mik phần c đc ko

19 tháng 11 2017

đề

19 tháng 11 2017

Tìm x,y,z biết