K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

Ta có : \(99^5-98^4+97^3-\) \(36^2\) = (........1).9 - (.........6) + (.........3) - (........6)

= (.........9) - (.........6) + (.........3) - (..........6) = (.........0) chia hết cho 2 và 5 (đpcm)

k nha bạn

21 tháng 7 2016

http://olm.vn/hoi-dap/question/10953.html

24 tháng 10 2016

ta có n2-1 chia het cho 2 va 5

=> n2 -1 chia het cho 10

=> n2 -1=.....0

=>n2 =....1

=> ta co cao so co dang n2 co tan cung la 1 : 0;9;11;21;..........

ma n khac 0 => n=9

24 tháng 10 2016

0 là số tự nhiên nhỏ nhất chia hết cho 2 vs 5 

=> n2 - 1 = 0 chia hết cho 2 vs 5

n2 = 1

=> n = 1 hoặc -1

mà n là số TN => n=1

21 tháng 2 2016

1:

 với a, b, c nguyên thỏa a + b + c = 0 
ta có: 
a^5 + b^5 + c^5 = (a³+b³)(a²+b²) - a³b² - a²b³ - (a+b)^5 << thay c = -(a+b) >> 

= (a+b)(a²-ab+b²)(a²+b²) - a²b²(a+b) - (a+b)^5 

= (a+b)[a^4 + b^4 + 2a²b² - a³b - ab³ - a²b² - (a²+b²+2ab)²] 

= (a+b)(-5a²b² - 5a³b - 5ab³) 

= -5ab(a+b)(ab+a²+b²) 

= 5abc(a²+b²+ab) 

Vậy a^5 + b^5 + c^5 chia hết cho 5abc 
- - - 
trở lại bài toán đặt a = x-y ; b = y-z ; c = z-x có ngay a+b+c = 0 
do đó ad đẳn thức ở trên ta có: 
(x-y)^5 + (y-z)^5 + (z-x)^5 chia hết cho 5(x-y)(x-z)(z-x) 

2:

cách 1 
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 

cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn) 
(a-b)^n = a^n+...............+-b^b(n lẻ) 
(2222^5555) + (5555^2222) 
=(7.317 +3)^5555 + (7.793+4)^2222 
=7K+3^5555 +7P+4^2222 
=7K+7P +(3^5)^1111 + (4^2)^1111 
=7P+7k +(259)U chia hết cho 7 
bạn có thể tham khảo 2 cách

21 tháng 2 2016

Tìm x: (1/2x-1004)^2008 = (1/2x-1004)^2006 help me

9 tháng 2 2017

a) Chú ý: \(3012⋮3\Rightarrow3012^{95}⋮9\), nên hiển nhiên \(3012^{95}-1\) không chia hết cho 9

b/ \(5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}=20.5^{2n}.2^n+18.3^n.2^{2n}\)

chỉ cần CM \(5^{2n}.2^n-3^n.2^{2n}⋮19\)là xong

Có \(5^{2n}.2^n-3^n.2^{2n}=2^n\left(25^n-6^n\right)⋮\left(25-6\right)=19\)

15 tháng 12 2016

Vì số chính phương chia 3 dư 1 hoặc 0

Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là

(0;0) (0;1) (1;0) (1;1)

Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3

25 tháng 1 2017

Bài 1:

A = 32 + 33 + 34 + ... + 32018

3A = 33 + 34 + 35 + ... + 32019

3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)

2A = 32019 - 9

A = (32019 - 9) : 2

= (32016.33 - 9) : 2

= [ (34)504.27 - 9] : 2

= [ (...1)504.27 - 9] : 2

= [ (...1).27 - 9] : 2

= [ (...7) - 9] : 2

= (....8) : 2

= ...4

Vậy c/s tận cùng của A là 4

Bài 2:

Ta có:

1019 + 1018 + 1017

= 1016.103 + 1016.102 + 1016.10

= 1016.(103 + 102 + 10)

= 1016.1110

= 1016.2.555

Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555

Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)

Bài 3:

x + 6 chia hết cho x + 2

=> x + 2 + 4 chia hết cho x + 2

=> 4 chia hết cho x + 2

=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}

x + 2 1 -1 2 -2 4 -4
x -1 -3 0 -4 2 -6

Vậy x = {-1;-3;0;-4;2;-6}

Bài 4:

Giả sử x + 4y chia hết cho 7 (1)

Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7

=> 6x + 10y chia hết cho 7 (2)

Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7

=> x + 4y + 6x + 10y chia hết cho 7

=> (x + 6x) + (4y + 10y) chia hết cho 7

=> 7x + 14y chia hết cho 7

=> 7(x + 2y) chia hết cho 7

=> Giả sử đúng

Vậy x + 4y chia hết cho 7 (đpcm)

Bài 5:

1, Ta có: \(-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow A\le0\)

Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2

Vậy GTNN của A là -1 khi x = -2

2, Ta có: \(x^2\ge0\)

\(\left|2y-18\right|\ge0\)

\(\Rightarrow x^2+\left|2y-18\right|\ge0\)

\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)

Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Bài 6:

1, xy + 2x - y - 2 = 5

<=> x(y + 2) - (y + 2) = 5

<=> (x - 1)(y + 2) = 5

=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}

Ta có bảng:

x - 1 1 -1 5 -5
y + 2 5 -5 1 -1
x 2 0 6 -4
y 3 -7 -1 -3

Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)

2, x + y = 2xy

<=> 2xy - x - y = 0

<=> 2(2xy - x - y) = 2.0

<=> 4xy - 2x - 2y = 0

<=> (4xy - 2x) - 2y - 1 = 0 - 1

<=> 2x(2y - 1) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}

Ta có bảng:

2x - 1 1 -1
1 - 2y -1 1
x 1 0
y 1 0
25 tháng 1 2017

Vậy các cặp (x;y) là (1;1) ; (0;0)