K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Ta có

\(n^3-n=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+2\right)\)

Ta có \(n\left(n-1\right)\left(n+2\right)\) chia hết cho 2 vì có tích 2 số tự nhiên liên tiếp

           \(n\left(n-1\right)\left(n+2\right)\) chia hết cho 3 ví là tích 3 số tự nhiên liên tiếp

Mà (2;3)=1

=>\(n^3-n\) chia hết cho 6 (đpcm)

3 tháng 8 2016

Ta có : \(n^3-n\)

\(=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Ta có : \(n\left(n-1\right)\left(n+1\right)\) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2.3 = 6

Ta có: \(n\left(n+2\right)\left(49n^2-1\right)\)

\(=n\left(n+2\right)\left(49n^2-49+48\right)\)

\(=n\left(n+2\right)\left(49n^2-49\right)+48n\left(n+2\right)\)

\(=n\cdot\left(n+2\right)\cdot49\cdot\left(n^2-1\right)+48n\left(n+2\right)\)

\(=49\cdot n\cdot\left(n-1\right)\left(n+1\right)\left(n+2\right)+48n\left(n+2\right)\)

\(=49\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)\)

Ta có: n-1;n;n+1;n+2 là bốn số tự nhiên liên tiếp

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)

\(\Leftrightarrow49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)(1)

Ta có: \(48⋮24\)(Do 48 là bội của 24)

nên \(48n\left(n+2\right)⋮24\)(2)

Từ (1) và (2) suy ra \(49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)⋮24\)

\(\Leftrightarrow n\cdot\left(n+2\right)\cdot\left(49n^2-1\right)⋮24\)(đpcm)

9 tháng 7 2016

1./ Khẳng định 1: Với mọi p tự nhiên > 0, ta đều có: yp - 1 = (y - 1)*(yp-1 + yp-2 + yp-3 +... + y + 1)

Hay yp - 1 chia hết cho y - 1 với mọi y nguyên > 1.

2./ Nếu m = n = 0 thì hiển nhiên x3*0+1 + x3*0+2 + 1 = x2 + x + 1 chia hết cho:  x2 + x + 1

3./ Nếu m; n không đồng thời bằng 0 thì:

Viết \(A=x^{3m+1}+x^{3n+2}+1=x\cdot x^{3m}-x+x^2\cdot x^{3n}-x^2+x^2+x+1.\)

\(A=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+x^2+x+1\)

\(A=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+x^2+x+1\)

Áp dụng khẳng định 1 cho m, n tự nhiên > 0 ta có:

\(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x3 - 1. Mà x3 - 1 = (x - 1)(x2 + x + 1)

=> \(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x2 + x + 1

=> A chia hết cho x2 + x + 1 với mọi m,n là số tự nhiên. đpcm

Với m,n là các số tự nhiên ta có \(x^{3m+1}+x^{3n+1}+1=\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x\right)+x^2+x+1\)
Ta thấy:

  1. \(x^{3m+1}-x=x\left(\left(x^3\right)^m-1\right)\) chia hết cho \(x^3-1\)và vì \(x^3-1\) chia hết cho x^2 + x + 1 nên x^(3m + 1) - x chia hết cho x^2 + x + 1. 

ii/ x^(3n + 2) - x^2 = x^2[(x^3)^n - 1] chia hết cho x^3 - 1, và vì x^3 - 1 chia hết cho x^2 + x + 1 nên x^(3n + 2) - x^2 chia hết cho x^2 + x + 1. 
Từ đó suy ra [x^(3m + 1) - x] + [x^(3n + 2) - x^2] + (x^2 + x + 1) chia hết cho x^2 + x + 1, hay x^(3m + 1) + x^(3n + 2) + 1 chia hết cho x^2 + x + 1. Đây là điều phải chứng minh.

26 tháng 7 2021

a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2) 

Sẽ ko chia hết cho 8 nếu n là số lẻ!

b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n

Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt 

16 tháng 6 2015

n3-n=n(n-1)(n+1)

n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4  =>n(n-1)(n+1) chia hết cho 4

Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3

=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)
 

13 tháng 7 2019

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n⋮5\)

Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\left(đpcm\right)\)

13 tháng 7 2019

Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=\left(2n^2-2n^2\right)-\left(3n+2n\right)\)

\(=-5n⋮5\forall n\inℕ\left(đpcm\right)\)

Rất vui vì giúp đc bạn <3

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).