Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)
\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)
\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)
Bạn chử mai làm đúng rồi. Chỉ là nhầm ở phần kết luận thôi. Mình giúp bạn ấy hoàn thành bài làm thôi nhé.
Ta có: \(\left(2x^2+x\right)^2< 4A\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-3=0\\5x^2=0\end{cases}}\)
\(\Leftrightarrow x=3;-1;0\)
\(\Leftrightarrow A=121;1\)
cái này dùng phương pháp đánh giá tức là chặn ấy , em tự làm nhé, bận lắm
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
\(S=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\) là SCP (đpcm)