\(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+........+\frac{1}{\sqrt{n}}< 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)

9 tháng 10 2016

Bài 1:

Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

xong bn áp dụng lên trên lm tiếp

9 tháng 10 2016

Bài 3:

theo bđt cô si ta có:

\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)

=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)                         (1)

Tương tự ta có :

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)                            (2)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)                               (3)

Cộng vế vs vế (1)(2)(3) ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

17 tháng 8 2018

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.

20 tháng 10 2018

Quy đồng hết lên

CHú yys : nên c/m từng cái một thì hơn

/

16 tháng 11 2018

mèo conavt2714691_60by60.jpg

29 tháng 6 2016

Với mọi n >1 ta đều có: \(\sqrt{n+1}>\sqrt{n}>\sqrt{n-1}>0\Rightarrow\sqrt{n+1}+\sqrt{n}>2\sqrt{n}>\sqrt{n}+\sqrt{n-1}>0\)

\(\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{n}+\sqrt{n-1}}\)\(\Rightarrow\frac{\left(n+1\right)-n}{\sqrt{n+1}+\sqrt{n}}< \frac{1}{2\sqrt{n}}< \frac{n-\left(n-1\right)}{\sqrt{n}+\sqrt{n-1}}\)

\(\Rightarrow\sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}< \sqrt{n}-\sqrt{n-1}\)

\(\Rightarrow2\sqrt{n+1}-2\sqrt{n}< \frac{1}{\sqrt{n}}< 2\sqrt{n}-2\sqrt{n-1}\)đpcm.

Từ đó ta có:

\(2\sqrt{2}-2< \frac{1}{\sqrt{1}}=1;\)

\(2\sqrt{3}-2\sqrt{2}< \frac{1}{\sqrt{2}}< 2\sqrt{2}-2;\)

\(2\sqrt{4}-2\sqrt{3}< \frac{1}{\sqrt{3}}< 2\sqrt{3}-2\sqrt{2};\)

...

\(2\sqrt{1006010}-2\sqrt{1006009}< \frac{1}{\sqrt{1006009}}< 2\sqrt{1006009}-2\sqrt{1006008};\)

Cộng từng vế ta được:

\(2\sqrt{1006009}-2< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2\cdot1003-1\)

\(2004< 2\sqrt{1006010}-2< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{1006009}}< 2005\)đpcm

Một bất đẳng thức HAY và rất chặt! 1 tổng các phân thức của căn thức bị chặn bởi 2 số tự nhiên liên tiếp!

6 tháng 7 2017

Ta có :

\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)

Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)

Áp dụng BĐT , ta có :

\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)

\(\Rightarrow M< 100\)