K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)

\(<\frac{1}{2^4}-\frac{1}{2^4}+\frac{1}{2^8}-\frac{1}{2^8}+...+\frac{1}{2^{4n}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}-\frac{1}{2^{2004}}\)=0+0+0+...+0+....+0=0 <0,2

Vậy S<0,2

22 tháng 2 2016

Ảo quá \(\frac{1}{4n-2}<\frac{1}{4n}\)

8 tháng 2 2016

đặt \(A=\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(A=\left(\frac{2003}{2}+1\right)+\left(\frac{2002}{3}+1\right)+..+\left(\frac{1}{2004}+1\right)+\frac{2005}{2005}\)

\(A=\frac{2005}{2}+\frac{2005}{3}+..+\frac{2005}{2004}+\frac{2005}{2005}\)

\(A=2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2004}+\frac{1}{2005}\right)\)

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2005}\right)}=\frac{1}{2005}\)

vậy P=1/2005

4 tháng 2 2016

cái này zới cái trên để mai tính giờ ngủ

1 tháng 2 2016

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\)

\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)

Suy ra: điều cần chứng minh

1 tháng 2 2016

đặt 1/5^2+1/6^2+,,,+1/100^2=A

*chứng minh A<1/4

ta có: \(\frac{1}{5^2}=\frac{1}{5.5}<\frac{1}{4.5}\)

\(\frac{1}{6^2}=\frac{1}{6.6}<\frac{1}{5.6}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}\)

\(=>A<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)    
\(=>A<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}=>A<\frac{1}{4}\left(1\right)\)

*chứng minh A>1/6

ta có \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)

\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)

\(=>A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=>A>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}=>A>\frac{1}{6}\) (2)

từ (1) và (2)=>1/6<A<1/4 hay 1/6<1/5^2+...+1/100^2<1/4(đpcm)

tick nhé

24 tháng 4 2016

A=1+1/2^2+1/3^2+1/4^2+...+1/100^2

A<1+1/1*2+1/2*3+1/3*4+...+1/99*100

A=1+1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1+1-1/100

A=2-1/100<2

nên A<2

24 tháng 4 2016

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 2-\frac{1}{100}\)

Mà hiệu  \(2-\frac{1}{100}< 2\Rightarrow A< 2\) 

19 tháng 4 2016

Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)

Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)

Vậy B < 1

26 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}\\\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8} \\ =\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=1-\frac{1}{8}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1\)

Chúc bạn học tốt!hihi

26 tháng 4 2016

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\)

                                          = \(1-\frac{1}{8}< 1\)

Vậy B < 1

22 tháng 2 2016

lồnucche

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

 

25 tháng 4 2016

Đặt A = (1/2)(3/4)(5/6) ... (9999/10000) (A > 0) 
.Và B = (2/3)(4/5)(6/7) ... (10000/10001) (B > 0) 
Ta có A.B = (1/2)(2/3)(3/4) ... (10000/10001) = 1/10001 (1) 
Mặt khác : 
1/2 < 2/3 
3/4 < 4/5 
................ 
................ 
9999/10000 < 10000/10001 
Nhân tất cả vế theo vế ---> A < B ---> A² < A.B (2) 
(1),(2) ---> A² < 1/10001 ---> A < căn(1/10001) < căn(1/10000) = 1/100 (đpcm)

25 tháng 4 2016

nếu k^2=n thì ta nói căn bậc 2 của n là k(kEN)