\(x^5-3x^4+6x^3-3x^2+9x-6\)không thể có nghiệm nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

MT phục vụ cậu 

\(P\left(x\right)=x^5-3x^4+6x^3-3x^2+9x-6=0\)

Vậy phuwong trình vô nghiệm.

8 tháng 7 2019

1.Gọi a,b,c là độ dài 3 cạnh tam giác vuông ABC, c là cạnh huyền.

Ta có \(a^2+b^2=c^2;a,b,c\in\)N* , diện tích tam giác ABC là \(S=\frac{ab}{2}\)

Trước hết ta chứng minh ab chia hết cho 12.

+ Chứng minh \(ab⋮3\): Nếu cả a và b đồng thời không chia hết cho 3 thì \(a^2+b^2\)chia 3 dư 2. Suy ra số chính phương \(c^2\)chia 3 dư 2, vô lí.

+ Chứng minh \(ab⋮4\): - Nếu a,b chẵn thì \(ab⋮4\)

- Nếu trong hai số a,b có số lẻ, chẳng hạn a lẻ.

Lúc đó c lẻ. Vì nếu c chẵn thì \(c^2⋮4\), trong lúc \(a^2+b^2\)không thể chia hết cho 4. Đặt \(a=2k+1,c=2h+1,k,h\in N\)

Ta có: \(b^2=\left(2h+1\right)^2-\left(2k+1\right)^2=4\left(h-k\right)\left(h+k+1\right)\)

               \(=4\left(h-k\right)\left(h-k+1\right)+8k\left(h-k\right)⋮8\)

Suy ra \(b⋮4\). Nếu ta chia cạnh AB (chẳng hạn) thành 6 phần bằng nhau, nối các điểm chia với C thì tam giác ABC được chia thành 6 tam giác, mỗi tam giác có diện tích bằng \(\frac{ab}{2}\)là một số nguyên.

8 tháng 7 2019

2. Với \(a\in Z,\)ta có: \(P\left(a\right)=a^5-3a^4+6a^3-3a^2+9a-6\)

Nếu a chia hết cho 3 thì tất cả các số hạng trong P(a) đều chia hết cho 9, trừ số hạng cho 6, do đó P(a) không chia hết cho 9, nghĩa là \(P\left(a\right)\ne0\).

Nếu a không chia hết cho 3 thì \(a^5\)không chia hết cho 3 trong khi tất cả các số hạng khác trong P(a) đều chia hết cho 3, do đó P(a) không chia hết cho 3, nghĩa là \(P\left(a\right)\ne0\). Vậy \(P\left(a\right)\ne0\)với mọi \(a\in Z\).

9 tháng 2 2020

Sắp xếp lại các đa thức ta có: 

\(A\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)

\(B\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)

a) Ta có: \(C\left(x\right)=A\left(x\right)-B\left(x\right)\)

\(=\left(x^5+3x^4-2x^3-9x^2+11x-6\right)-\left(x^5+3x^4-2x^3-10x^2+9x-8\right)\)

\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)

\(=x^2+2x+2\)

b) \(C\left(x\right)=2x+2\)\(\Leftrightarrow x^2+2x+2=2x+2\)

\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)

Vậy \(x=0\)

c) \(C\left(x\right)=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Giả sử ta có: \(C\left(x\right)=2012\)\(\Rightarrow\left(x+1\right)^2+1=2012\)

\(\Leftrightarrow\left(x+1\right)^2=2011\)

Vì \(x\inℤ\)\(\Rightarrow\left(x+1\right)^2\)là số chính phương

mà 2011 không là số chính phương \(\Rightarrow\)C(x) không thể nhận giá trị bằng 2012 ( đpcm )

13 tháng 7 2018

\(E=-x^2-3x-5=-\left(x^2+3x+5\right)=-\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}\\ \)

\(=-\left(x+\frac{3}{2}\right)^2-\frac{11}{4}=-\left(\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)

\(F=-3x^2-6x-4=-3.\left(x^2+2x+\frac{4}{3}\right)=-3.\left(\left(x^2+2x+1\right)+\frac{1}{3}\right)\)

\(=-3.\left(\left(x+1\right)^2+\frac{1}{3}\right)\le-\frac{3.1}{3}=-1< 0\)

13 tháng 7 2018

\(-x^2-3x-5\)

\(=-\left(x^2+3x+5\right)\)

\(=-\left[x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\right]\)

\(=-\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+5\right]\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{11}{4}\)

Vậy biểu thức luôn âm với mọi giá trị của x.

22 tháng 4 2020

F= 21x- 24x+ 9x5 + 3x3 + 6x+ 2006 

  = 3x2( 7x6 - 8x4 + 3x3 + x +2) +2006 

  = 0 + 2006 

  = 0

22 tháng 4 2020

sorry cái kquả ban nãy mình viết nhầm

Kquả là 2006

20 tháng 4 2016

Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)

Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)

13 tháng 7 2018

ai kb vs tui ko buồn v:))

13 tháng 7 2018

ta có D= -x^2-x-1 mà -x^2 <0 =>-x^2-x-1 < 0

cm tương tự ta có E,F < 0 với mọi giá trị của x

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

5 tháng 6 2020

thanhk bạn