Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\).
Áp dụng tính chất của dãy tỉ số bằng nhau ta được từ
\(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(z+x\right)-\left(x+y\right)}{ca-ab}=\frac{z-y}{a\left(c-b\right)}=\frac{y-z}{a\left(b-c\right)}.\) (1)
Tương tự, \(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)},\) (2)
và
\(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(z+x\right)}{bc-ca}=\frac{y-x}{c\left(b-a\right)}=\frac{x-y}{c\left(a-b\right)}.\) (3)
Từ (1), (2), (3) ta suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}.\) (ĐPCM)
\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\Leftrightarrow\frac{y+z}{\frac{1}{a}}=\frac{z+x}{\frac{1}{b}}=\frac{x+y}{\frac{1}{c}}=\)
\(=\frac{y+z-\left(z+x\right)}{\frac{1}{a}-\frac{1}{b}}=\frac{z+x-\left(x+y\right)}{\frac{1}{b}-\frac{1}{c}}=\frac{x+y-\left(y+z\right)}{\frac{1}{c}-\frac{1}{a}}=\frac{y-x}{\frac{b-a}{ab}}=\frac{z-y}{\frac{c-b}{bc}}=\frac{x-z}{\frac{a-c}{ac}}\)
Chia các vế của 3 tỷ lệ thức cuối cho abc ta có:
\(\frac{y-x}{\frac{b-a}{ab}\cdot abc}=\frac{z-y}{\frac{c-b}{bc}\cdot abc}=\frac{x-z}{\frac{a-c}{ac}\cdot abc}=\frac{y-x}{c\left(b-a\right)}=\frac{z-y}{a\left(c-b\right)}=\frac{x-z}{b\left(a-c\right)}\)
Hay: \(\frac{x-y}{c\left(a-b\right)}=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}\)đpcm