Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt có hai nghiệm dương <=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-4\left(m^2-1\right)=4>0\left(lđ\right)\\2m>0\\m^2-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\end{matrix}\right.\) => m>1
Vậy....
theo vi-ét, để pt có 2 nghiệm dương:\(\hept{\begin{cases}x1x2=m-1>0\Leftrightarrow m>1\\x1x2=-2m>0\Leftrightarrow m< 0\end{cases}}\)
điều này là vô lí
=> dpcm
Ta có :
\(x^2-2mx-4m-4=0\)
\(\Rightarrow x^2+2x-2mx-4m-2x-4=0\)
\(\Leftrightarrow x\left(x+2\right)-2m\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2m-2\right)=0\)
\(\Rightarrow|\left[{}\begin{matrix}x+2=0\\x-2m-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2m+2\end{matrix}\right.\)
Vạy phương trình ban đầu có 2 nghiệm là -2 và (2m+2) . Để phương trình có một nghiệm nhỏ hơn -2018 thì :
2m+2 < -2018
\(\Leftrightarrow2m< -2020\)
\(\Leftrightarrow m< -1010\)
Vậy vs m < -1010 thì pt có một nghiệm nhỏ hơn -2018
PT nhận \(x=1\) là nghiệm
Thay \(x=1\) vào trong PT ta tìm được m:
\(x^2-2mx+2m^2-m-6=0\)
\(\Rightarrow1^2-2\cdot m\cdot1+2m^2-m-6=0\)
\(\Leftrightarrow1-2m+2m^2-m-6=0\)
\(\Leftrightarrow2m^2-3m-5=0\)
\(\Leftrightarrow2m^2+2m-5m-5=0\)
\(\Leftrightarrow2m\left(m+1\right)-5\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(2m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\2m-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{5}{2}\end{matrix}\right.\)
Vậy PT nhận \(x=1\) là nghiệm khi \(m=-1\) hoặc \(m=\dfrac{5}{2}\)
Thay \(x=1\) vào pt \(x^2-2mx+2m^2-m-6=0\)
\(\Rightarrow1^2-2m.1+2m^2-m-6=0\)
\(\Rightarrow-3m+2m^2-5=0\)
\(\Rightarrow2m^2-3m-5=0\)
\(\Delta=b^2-4ac=\left(-3\right)^2-4.2.\left(-5\right)=49>0\)
\(\Rightarrow\) Pt có 2 nghiệm \(m_1,m_2\)
\(\left\{{}\begin{matrix}m_1=\dfrac{3+\sqrt{49}}{2.2}=\dfrac{5}{2}\\m_2=\dfrac{3-\sqrt{49}}{2.2}=-1\end{matrix}\right.\)
Vậy \(m=\dfrac{5}{2},m=-1\) thì pt có 1 nghiệm \(x=1\)
Lời giải:
Ta thấy:
\(\Delta'=(m-1)^2+(m+1)\)
\(m^2-m+2=(m-\frac{1}{2})^2+\frac{7}{4}>0,\forall m\in\mathbb{R}\) nên phương trình luôn có hai nghiệm phân biệt với mọi $m$
Áp dụng định lý Viete: \(\left\{\begin{matrix}
x_1+x_2=-2(m-1)\\
x_1x_2=-(m+1)\end{matrix}\right.\)
a)
Pt có một nghiệm nhỏ hớn 1 và một nghiệm lớn hơn 1 khi và chỉ khi:
\((x_1-1)(x_2-1)< 0\)
\(\Leftrightarrow x_1x_2-(x_1+x_2)+1< 0\)
\(\Leftrightarrow -(m+1)+2(m-1)+1< 0\)
\(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
Vậy $m< 2$
b)
PT có hai nghiệm đều nhỏ hơn $2$ khi mà:
\(\left\{\begin{matrix} (x_1-2)(x_2-2)> 0\\ x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2< 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(m+1)+4(m-1)+4>0\\ -2(m-1)< 4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 3m-1>0\\ 2m+2>0\end{matrix}\right.\Leftrightarrow m> \frac{1}{3}\)
a) Ta có : \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)
=> Phương trình luôn có 2 nghiệm phân biệt
b) Hệ thức Viete :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)
Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)
\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)
Do (m - 1)2 + 3 \(\ge3\forall m\)
nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)
Vậy Mmin = -2 <=> m = 1
2mx=x+1
<=> x(2m-1)=1
<=> x=1/(2m-1)
mà ta có m>1
<=> 2m>2
<=> 2m-1>1
Suy ra 1/(2m-1) <1
Hay x<1
k mình nhé