K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

2mx=x+1

<=> x(2m-1)=1

<=> x=1/(2m-1)

mà ta có m>1

<=> 2m>2

<=> 2m-1>1

Suy ra 1/(2m-1) <1

Hay x<1

9 tháng 3 2017

k mình nhé

30 tháng 5 2021

Pt có hai nghiệm dương <=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-4\left(m^2-1\right)=4>0\left(lđ\right)\\2m>0\\m^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m< -1\\m>1\end{matrix}\right.\end{matrix}\right.\) => m>1

Vậy....

15 tháng 4 2018

ai tl phụ đi

15 tháng 4 2018

theo vi-ét, để pt có 2 nghiệm dương:\(\hept{\begin{cases}x1x2=m-1>0\Leftrightarrow m>1\\x1x2=-2m>0\Leftrightarrow m< 0\end{cases}}\)

điều này là vô lí

=> dpcm

28 tháng 1 2020

Ta có :

\(x^2-2mx-4m-4=0\)

\(\Rightarrow x^2+2x-2mx-4m-2x-4=0\)

\(\Leftrightarrow x\left(x+2\right)-2m\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2m-2\right)=0\)

\(\Rightarrow|\left[{}\begin{matrix}x+2=0\\x-2m-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2m+2\end{matrix}\right.\)

Vạy phương trình ban đầu có 2 nghiệm là -2 và (2m+2) . Để phương trình có một nghiệm nhỏ hơn -2018 thì :

2m+2 < -2018

\(\Leftrightarrow2m< -2020\)

\(\Leftrightarrow m< -1010\)

Vậy vs m < -1010 thì pt có một nghiệm nhỏ hơn -2018

28 tháng 1 2020

Vương Thị Thanh Hoa ừm vui

25 tháng 6 2023

PT nhận \(x=1\) là nghiệm 

Thay \(x=1\) vào trong PT ta tìm được m:

\(x^2-2mx+2m^2-m-6=0\)

\(\Rightarrow1^2-2\cdot m\cdot1+2m^2-m-6=0\)

\(\Leftrightarrow1-2m+2m^2-m-6=0\)

\(\Leftrightarrow2m^2-3m-5=0\)

\(\Leftrightarrow2m^2+2m-5m-5=0\)

\(\Leftrightarrow2m\left(m+1\right)-5\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(2m-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\2m-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{5}{2}\end{matrix}\right.\)

Vậy PT nhận \(x=1\) là nghiệm khi \(m=-1\) hoặc \(m=\dfrac{5}{2}\)

25 tháng 6 2023

Thay \(x=1\) vào pt \(x^2-2mx+2m^2-m-6=0\)

\(\Rightarrow1^2-2m.1+2m^2-m-6=0\)

\(\Rightarrow-3m+2m^2-5=0\)

\(\Rightarrow2m^2-3m-5=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4.2.\left(-5\right)=49>0\)

\(\Rightarrow\) Pt có 2 nghiệm \(m_1,m_2\)

\(\left\{{}\begin{matrix}m_1=\dfrac{3+\sqrt{49}}{2.2}=\dfrac{5}{2}\\m_2=\dfrac{3-\sqrt{49}}{2.2}=-1\end{matrix}\right.\)

Vậy \(m=\dfrac{5}{2},m=-1\) thì pt có 1 nghiệm \(x=1\)

AH
Akai Haruma
Giáo viên
28 tháng 4 2018

Lời giải:

Ta thấy:

\(\Delta'=(m-1)^2+(m+1)\)

\(m^2-m+2=(m-\frac{1}{2})^2+\frac{7}{4}>0,\forall m\in\mathbb{R}\) nên phương trình luôn có hai nghiệm phân biệt với mọi $m$
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=-2(m-1)\\ x_1x_2=-(m+1)\end{matrix}\right.\)

a)

Pt có một nghiệm nhỏ hớn 1 và một nghiệm lớn hơn 1 khi và chỉ khi:

\((x_1-1)(x_2-1)< 0\)

\(\Leftrightarrow x_1x_2-(x_1+x_2)+1< 0\)

\(\Leftrightarrow -(m+1)+2(m-1)+1< 0\)

\(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)

Vậy $m< 2$

b)
PT có hai nghiệm đều nhỏ hơn $2$ khi mà:

\(\left\{\begin{matrix} (x_1-2)(x_2-2)> 0\\ x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2< 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(m+1)+4(m-1)+4>0\\ -2(m-1)< 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3m-1>0\\ 2m+2>0\end{matrix}\right.\Leftrightarrow m> \frac{1}{3}\)

19 tháng 5 2018

hay thâtvuilolangbanhquahihaleuoho

4 tháng 4 2023

a) Ta có :  \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)

=> Phương trình luôn có 2 nghiệm phân biệt

b) Hệ thức Viete : 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)

Do (m - 1)2 + 3 \(\ge3\forall m\)

nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)

Vậy Mmin = -2 <=> m = 1

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath