CMR:nếu \(\dfrac{bz-cy}{a}\)=\(\dfrac{cx-az}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 3 2024

Lời giải:
Áp dụng TCDTSBN:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a(bz-cy)}{a^2}=\frac{b(cx-az)}{b^2}=\frac{c(ay-bx)}{c^2}$

$=\frac{a(bz-cy)+b(cx-az)+c(ay-bx)}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx=0$

$\RIghtarrow bz=cy, cx=az$

$\Rightarrow \frac{x}{a}=\frac{z}{c}; \frac{z}{c}=\frac{y}{b}$
$\Rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$

Ta có đpcm.

12 tháng 8 2017

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-caz}{b^2}=\dfrac{cay-cbx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-caz}{b^2}=\dfrac{cay-cbx}{c^2}=\dfrac{abz-acy+bcx-caz+cay-cbx}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)

Do đó :

\(abz=acy\Leftrightarrow bz=cy\Leftrightarrow\dfrac{z}{c}=\dfrac{y}{b}\left(1\right)\)

\(bcx=baz\Leftrightarrow cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a(bz-cy)}{a^2}=\frac{b(cx-az)}{b^2}=\frac{c(ay-bx)}{c^2}\)

\(=\frac{a(bz-cy)+b(cx-az)+c(ay-bx)}{a^2+b^2+c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)

\(\Rightarrow \left\{\begin{matrix} bz-cy=0\\ cx-az=0\\ ay-bx=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} bz=cy\\ cx=az\\ ay=bx\end{matrix}\right.\)

\(\Leftrightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Do đó ta có đpcm.

5 tháng 12 2017

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bz-cy}{a}=0\\\dfrac{cx-az}{b}=0\\\dfrac{ay-bx}{c}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(đpcm\right)\)

Bạn tham khảo ở đây nhé ! https://hoc24.vn/hoi-dap/question/533815.html

3 tháng 3 2018

gửi lời giải cho mk đi

3 tháng 12 2017

10 người cùng cày trên 1 cánh đồng hết 10,5 h

a)Hỏi nếu 5 máy cùng cày trên 9 mảnh ruộng như thế hết bao nhiêu thời gian ,biết rằng năng xuất của 1 máy =15 người và cày 1 cánh đồng 3h

b)cho chu vi mảnh ruộng là 18 m , và chiều dài tỉ lệ với chiều rộng là 5:1 . hỏi giá tiền của phải trả cho người cày hết 9 mảnh ruộng đó là bao nhiêu tiền biết 1m2 phải trả 10000 đồng

3 tháng 12 2017

làm hộ mk rồi mk giải cho mik lm bài này rồi

4 tháng 11 2017

Giải:

\(\dfrac{bz-xy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-cbx}{c^2}\)

\(\Rightarrow\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}\)

\(=0\)

Ta có: \(\dfrac{bz-cy}{a}\)

\(\Rightarrow bz-cy=0\)

\(\Rightarrow\dfrac{z}{c}=\dfrac{b}{y}\)\(\left(1\right)\)

Ta có:\(\dfrac{cx-az}{b}=0\)

\(\Rightarrow cx-az=0\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)(đpcm)

23 tháng 7 2017

Mình đã làm ở đây: Câu hỏi của Huyền Trang Tiến Tài

17 tháng 3 2017

Từ giả thiết => \(\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)=> \(\dfrac{abz-acy}{a^2}=\dfrac{bcx-baz}{b^2}=\dfrac{cay-cbx}{c^2}\).

Áp dụng tính chất của dãy tỉ số bằng nhau=> \(\dfrac{abz-acy}{a^2}=\dfrac{bcx-baz}{b^2}=\dfrac{cay-cbx}{c^2}\)= \(\dfrac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)

Do đó: abz=acy => bz= cy =>\(\dfrac{z}{c}=\dfrac{y}{b}\)(1)

bcx=baz => cx=az => \(\dfrac{x}{a}=\dfrac{z}{c}\)(2)

Từ (1) và (2) => \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)(đpcm)

24 tháng 10 2017

Nhân cả tử và mẫu của mỗi tỉ số với mẫu của nó rồi cộng lại với mhau

16 tháng 11 2017

Ta có :

\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\Rightarrow cy=bz\Rightarrow\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\Rightarrow az=cx\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra:\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)