K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

do a ;a+k ; a+2k là số nguyên tố >3

=> a;a+k;a+2k lẻ

=> 2a+k chẵn =>k⋮⋮ 2

mặt khác a là số nguyên tố >3 

=> a có dạng 3p+1 và 3p+2(p\(\in\) N*)

xét a=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a\(\in\) N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì a+2k là hợp số 

với k=3a+2 => a+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

Mà (3;2)=1

=> k⋮6

24 tháng 2 2016

Do a ;a+k ; a+2k là số nguyên tố >3

=> a;a+k;a+2k lẻ

=> 2a+k chẵn =>k⋮ 2

mặt khác a là số nguyên tố >3 

=> a có dạng 3p+1 và 3p+2(p N*)

xét a=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(p N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì a+2k là hợp số 

với k=3a+2 => a+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

Mà (3;2)=1

=> k⋮6

11 tháng 2 2016

a, a+k và a+2k là các số nguyên tố lớn hơn 3 ---> 3 số đó đều là số lẻ 
---> k chẵn (vì a lẻ và a+k lẻ) 
k chẵn nên k có thể có 3 dạng sau k = 6m; k = 6m+2 ; k = 6m+4 (m thuộc N) 
1) Nếu k = 6m+2. 
...Xét 2 TH : 
...+ a chia 3 dư 1 : 
.....Khi đó a+k = a+6m+2 chia hết cho 3 (mâu thuẫn với giả thiết a+k là số n/tố) 
...+ a chia 3 dư 2 : 
.....Khi đó a+2k = a+12m+4 chia hết cho 3 (trái với giả thiết a+2k là số n/tố) 
2) Nếu k = 6m+4 
...Xét 2 TH : 
...+ a chia 3 dư 1 
....Khi đó a+2k = a+12m+8 chia hết cho 3 (trái với giả thiết) 
...+ a chia 3 dư 2 
....Khi đó a+k = a+6m+4 chia hết cho 3 (trái giả thiết) 
Vậy 2 khả năng k = 6m+2 và k = 6m+4 bị loại 
---> k = 6m hay k chia hết cho 6.

Tích cho mình nha !

25 tháng 9 2021

thiếu dữ liệu ko tính đc vd a = 12 k = 6 thì vẫn chia hết 
1 đề bài sai 
2 thiếu dữ kiện

24 tháng 7 2019

Câu hỏi của Nguyễn Anh Kim Hân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

16 tháng 5 2018

Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.

• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)

• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:

   + Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3

   + Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3

   + Nếu a và a + 2k có cùng số dư, thì suy ra:

( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3

Vậy, ta luôn có k chia hết cho 3 (2)

Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.

Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:

• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.

• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.

24 tháng 3 2024

Bạn cao minh tâm ghi là "2k 3" và "k 3" có nghĩa là gì

2 tháng 1 2015

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

3 tháng 1 2015

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

18 tháng 10 2018

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

-vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3

 -nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư

2.

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6. 

18 tháng 10 2018

do m ;m+k ; m+2k là số nguyên tố >3

=> m;m+k;m+2k lẻ

=> 2m+k chẵn =>k 2

mặt khác m là số nguyên tố >3 

=> m có dạng 3p+1 và 3p+2(p N*)

xét m=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số 

với k=3a+2 => m+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k3

mà (3;2)=1

=> k6

28 tháng 12 2015

 Bài tập Toán

9 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2  không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $\Rightarrow$⇒ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3  k chia hết cho tích (2 . 3)

$\Rightarrow$⇒ k chia hết cho 6 (đpcm).

9 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)

$$ k chia hết cho 6 (đpcm).

AH
Akai Haruma
Giáo viên
27 tháng 2 2018

Lời giải:

Vì các số đã cho đều là số lớn hơn $3$ nên đều là số nguyên tố lẻ.

Do đó \(a+(a+k)=\text{lẻ}+\text{lẻ}=\text{chẵn}\)

\(\Leftrightarrow 2a+k\) chẵn kéo theo $k$ chẵn hay $k$ chia hết cho $2$ (1)

Mặt khác: Vì $a,a+k,a+2k$ đều lớn hơn $3$ nên không có số nào chia hết cho $3$. Do đó $a,a+k,a+2k$ chia $3$ chỉ có thể có 2 số dư $1,2$

Mà có $3$ số nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{3}{2}\right]+1=2\) số có cùng số dư khi chia cho $3$

Giả sử \(a,a+k\Rightarrow (a+k)-a\vdots 3\Leftrightarrow k\vdots 3\)

Giả sử \(a,a+2k\Rightarrow (a+2k)-a\vdots 3\Leftrightarrow 2k\vdots 3\Leftrightarrow k\vdots 3\)

Giả sử \(a+k, a+2k\Rightarrow (a+2k)-(a+k)\vdots 3\Leftrightarrow k\vdots 3\)

Tóm lại trong mọi TH thì $k$ chia hết cho $3$ (2)

Từ (1); (2) kết hợp với $(2,3)$ nguyên tố cùng nhau suy ra \(k\vdots 6\)