Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Ta có :A=(x+y)(x+4y)(x+2y)(x+3y)+42
=(x2+5xy+4y2)(x2+5xy+6y2)+42
Đặt x2+5xy+5y2=t (t thuộc Z)
Khi đó A=(t-1)(t+1)+42
A=t2-12+42
A=(x2+5xy+5y2)2-12+42
Vì x, y thuộc Z suy ra x2 thuộc Z, 5xy thuộc Z, 5y2thuộc Z
Suy ra x2+5xy+5y2 thuộc Z
Suy ra (x2+5xy+5y2)2 là số chính phương
Ta lại có 12 và 42 cũng là số chính phương
Suy ra A là số chính phương (đpcm)
Câu 1 đây bạn nhé. Mình ko chắc là nó đúng 100% đâu.
Ta có \(2012^{4n}\)tận cùng 6
\(2013^{4n}\)tận cùng1
\(2014^{4n}\)tận cùng 6
\(2015^{4n}\)tận cùng 5
\(\Rightarrow2012^{4n}+2013^{4n}+2014^{4n}+2015^{4n}\)tận cùng 8
Mà ko có số chính phương nào tận cùng 8
\(\Rightarrow2012^{4n}+2013^{4n}+2014^{4n}+2015^{4n}\)không phải số chính phương
Đề có sai ko you? Phải là n \(\in\)N* vì nếu \(n=0\)thì
\(2012^{4.0}+2013^{4.0}+2014^{4.0}+2015^{4.5}=2012^0+2013^0+2014^0+2015^0=1+1+1+1=2^2\)là số chính phương. Vô lý
P/s: Có gì thì gửi tin nhắn cho mk, mk sẽ giải chi tiết hơn nhé
a. Do I là trung điểm AB \(\Rightarrow MN\perp AI\)
Mặt khác MN là đường kính \(\Rightarrow\widehat{MCN}=90^0\) (góc nội tiếp chắn nửa đường tròn)
Xét tứ giác CDIN có \(\widehat{DCN}+\widehat{DIN}=90^0+90^0=180^0\Rightarrow CDIN\) nội tiếp
b. Xét hai tam giác vuông MID và MCN có \(\widehat{CMN}\) chung
\(\Rightarrow\Delta MID\sim\Delta MCN\Rightarrow\dfrac{MI}{MC}=\dfrac{MD}{MN}\)
\(\Rightarrow MC.MD=MI.MN\)
Mà MI cố định, MN cố định \(\Rightarrow MC.MD\) có giá trị không đổi khi D di động trên AB
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
câu trả lời là không nhé.. ta có thể chứng minh:
Giả sử : A,B là 2 số chính phương... \(\sqrt{A}=a\)
\(\sqrt{B}=b\) c là số không chính phương.
tích A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha