K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

Ta có : 

n- n = n2 x n - n = n ( n2 - 1 )

n ( n2 - 1 ) luôn chia hết cho 6 

16 tháng 4 2016

phải trình bày ra chứ

3 tháng 8 2015

n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6

hay n^3-n chia hết cho 6

n^5-n=n(n-1)(n+1)(n^2+1)

=n(n-1)(n+1)(n^2-4+5)

=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)

n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp

=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5

=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10

n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

=>5n(n-1)(n+1) chia hết cho 10

=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10

hay n^5-n chia hết cho 10

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

25 tháng 12 2021

+) Giả sử n là số chẵn

Nếu n là số chẵn thì n chia hết cho 2

=> n(n+)(2n+1) chia hết cho 2

+) Giả sử n là số lẻ

Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2

<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z     (1)

Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2

(+) Với n=3k

=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

(+) Với n=3k+1

=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3

(+) Với n=3k+2

=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3

<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z    (2)

Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )

                     => n(n+1)(2n+1)  chia hết cho 6 

=> ĐPCM

__HT__ Merry Christmas__

18 tháng 2 2018

giả sử A chia hết cho 49 => A chia hết 7 => (n+5)(n-2)+14 chia hết 7 mà 14 chia hết 7=>(n+5)(n-2) chia hết 7 mà 7 là số nguyên tố =>n+5 chia hết 7 hoặc n-2 chia hết cho 7 mà (n+5)-(n-2)=7 =>(n+5)(n-2) chia hết cho 49 mà A chia hết cho 49=>14 chia hết cho 49 (vô lý) => giả sử sai => a ko chia hết cho 49

20 tháng 12 2022

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên n(n-1)(n+1) chia hết cho 3!

=>n(n-1)(n+1) chia hết cho 3