Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(m=\frac{3^p-1}{2}\cdot\frac{3^p+1}{4}.\) Vì \(p\) là số nguyên tố lẻ nên \(3^p+1\) chia hết cho 4 và lớn hơn 4. Mặt khác \(3^p-1\) là số chẵn lớn hơn \(2\). Suy ra \(m\) là tích của 2 số nguyên lớn hơn 1, do đó là hợp số. Vì \(9^p-1\), chia hết cho \(m\) nên \(m\) không chia hết cho \(3.\)
Cuối cùng, \(m-1=\frac{9^p-9}{8}\). Theo định lý Fermat nhỏ \(9^p-9\) chia hết cho \(p\). Mặt khác, \(9^p-9=9\left(9^{p-1}-1\right)=9\cdot8\cdot\left(9^{p-2}+9^{p-3}+\dots+1\right)\)
chia hết cho \(8\times2=16.\) Suy ra \(m-1\) là số chẵn. Vậy \(m-1\) chia hết cho \(2p.\) Suy ra \(3^{m-1}-1\) chia hết cho \(3^{2p}-1=9^p-1\). Vậy \(3^{m-1}-1\) chia hết cho \(m\). Hay nói cách khác \(3^{m-1}\) chia \(m\) dư \(1.\)
a) Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
hay p-1 và p+1 là số chẵn
hay \(\left(p-1\right)\left(p+1\right)⋮8\)
Vì p là số nguyên tố lớn hơn 3 nên p=3k+1(k∈N) hoặc p=3k+2(k∈N)
Khi p=3k+1 thì \(\left(p-1\right)\left(p+1\right)=\left(3k+1-1\right)\left(3k+1+1\right)=3k\left(3k+2\right)⋮3\)
Khi p=3k+2 thì \(\left(p-1\right)\left(p+1\right)=\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\cdot3\cdot\left(k+1\right)⋮3\)
hay Với p là số nguyên tố lớn hơn 3 nên \(\left(p-1\right)\left(p+1\right)⋮3\)
Ta có: \(\left(p-1\right)\left(p+1\right)⋮3\)(cmt)
\(\left(p-1\right)\left(p+1\right)⋮8\)(cmt)
mà (3;8)=1
nên \(\left(p-1\right)\left(p+1\right)⋮3\cdot8=24\)(đpcm)
Theo đb ta có: P là nguyên tố lớn hơn 3
Suy ra: P không chia hết cho 2 và 3
Ta lại có: P không chia hết cho 2
Suy ra: (P-1) và (P+1) là hai số chẵn liên tiếp nhau
Suy ra: (P-1).(P+1) chia hết cho 8 (*)
\(n^3+3n^2-n-3\)
\(=\left(n^3-n\right)+\left(3n^2-3\right)\)
\(=n\left(n^2-1\right)+3\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\) 3 số chẵn liên tiếp (đúng với \(n\) lẻ) chia hết cho \(48\)
Ta có: \(n^3+3n^2-n-3=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
vì n lẻ nên \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\)là tích 3 số chẵn liên tiếp suy ra chia hết cho 48
Ta có \(3n^3-1011⋮1008\)
\(\Leftrightarrow\left(3n^3-3\right)-1008⋮1008\)
\(\Leftrightarrow3\left(n^3-1\right)⋮1008\)
\(\Leftrightarrow n^3-1⋮336\)\(⋮48\)
\(\Rightarrow\left(n-1\right)\left(n^2+n+1\right)⋮48\).
Do \(n^2+n+1\) là số lẻ với mọi \(n\inℤ\) nên suy ra được \(n-1⋮48\), đpcm.
Giả sử n là số chẵn ta có: 3n3 là số chẵn ⇒ 3n3 - 1011 là số lẻ
⇒ 3n3 - 1011 không chia hết cho 1008 vậy điều giả sử là sai
⇒ n là số lẻ. Mặt khác ta cũng có:
3n3 - 1011 ⋮ 1008 ⇔ 3n3 - 3 -1008 ⋮ 1008 ⇔ 3n3 - 3 ⋮ 1008
⇔3(n3-1)⋮ 1008⇔ n3 - 1⋮ 336 ⇔ n3 - 1⋮ 48 ⇔(n-1)(n2+n+1)⋮48(1)
vì n là số lẻ (chứng minh trên) nên ta có: n2 + n + 1 là số lẻ
⇔ n2 + n + 1 không chia hết cho 48 (2)
Kết hợp(1) và (2) ta có: n - 1 ⋮ 48 (đpcm)
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
\(P=n^3+4n^2-20n-48=\left(n+2\right)\left(n-4\right)\left(n+6\right)\)
Với \(n=4\Rightarrow P=0⋮125\)(thỏa)
Với \(n< 4\)thử từng giá trị đều không thỏa.
Vậy số \(n\)nhỏ nhất cần tìm là \(4\).
\(n^3+4n^2-20n-48\)
\(=n^3-4n^2+8n^2-32n+12n-48\)
\(=\left(n^3-4n^2\right)+\left(8n^2-32n\right)+\left(12n-48\right)\)
\(=n^2\left(n-4\right)+8n\left(n-4\right)+12\left(n-4\right)\)
\(=\left(n-4\right)\left(n^2+8n+12\right)\)
Nhận thấy n = 4 thì biểu thức trên bằng 0, chia hết cho 125.
Vậy số tự nhiên n nhỏ nhất là bằng 4 (thử với n = 1, 2, 3 đều không chia hết cho 125)
biens đỏi (M^3=20M)chia hết cho 48