K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

biens đỏi (M^3=20M)chia hết cho 48

15 tháng 8 2016

Ta có \(m=\frac{3^p-1}{2}\cdot\frac{3^p+1}{4}.\)   Vì \(p\) là số nguyên tố lẻ nên \(3^p+1\) chia hết cho 4 và lớn hơn 4. Mặt khác \(3^p-1\) là số chẵn lớn hơn \(2\). Suy ra \(m\) là tích của 2 số nguyên lớn hơn 1, do đó là hợp số. Vì \(9^p-1\), chia hết cho  \(m\) nên \(m\) không chia hết cho \(3.\)  


Cuối cùng, \(m-1=\frac{9^p-9}{8}\).  Theo định lý Fermat nhỏ \(9^p-9\) chia hết cho \(p\). Mặt khác, \(9^p-9=9\left(9^{p-1}-1\right)=9\cdot8\cdot\left(9^{p-2}+9^{p-3}+\dots+1\right)\)

chia hết cho \(8\times2=16.\) Suy ra \(m-1\) là số chẵn. Vậy \(m-1\) chia hết cho  \(2p.\) Suy ra \(3^{m-1}-1\)  chia hết cho \(3^{2p}-1=9^p-1\). Vậy \(3^{m-1}-1\) chia hết cho \(m\). Hay nói cách khác \(3^{m-1}\) chia \(m\) dư \(1.\)

15 tháng 8 2016

bạn ơi hình như bạn viết sai đề bài

a) Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

hay p-1 và p+1 là số chẵn

hay \(\left(p-1\right)\left(p+1\right)⋮8\)

Vì p là số nguyên tố lớn hơn 3 nên p=3k+1(k∈N) hoặc p=3k+2(k∈N)

Khi p=3k+1 thì \(\left(p-1\right)\left(p+1\right)=\left(3k+1-1\right)\left(3k+1+1\right)=3k\left(3k+2\right)⋮3\)

Khi p=3k+2 thì \(\left(p-1\right)\left(p+1\right)=\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\cdot3\cdot\left(k+1\right)⋮3\)

hay Với p là số nguyên tố lớn hơn 3 nên \(\left(p-1\right)\left(p+1\right)⋮3\)

Ta có: \(\left(p-1\right)\left(p+1\right)⋮3\)(cmt)

\(\left(p-1\right)\left(p+1\right)⋮8\)(cmt)

mà (3;8)=1

nên \(\left(p-1\right)\left(p+1\right)⋮3\cdot8=24\)(đpcm) 

16 tháng 1 2021

Theo đb ta có: P là nguyên tố lớn hơn  3

Suy ra: P không chia hết cho 2 và 3

Ta lại có: P không chia hết cho 2 

Suy ra: (P-1) và (P+1) là hai số chẵn liên tiếp nhau

Suy ra: (P-1).(P+1) chia hết cho 8  (*)

19 tháng 10 2017

\(n^3+3n^2-n-3\)

\(=\left(n^3-n\right)+\left(3n^2-3\right)\)

\(=n\left(n^2-1\right)+3\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\) 3 số chẵn liên tiếp (đúng với \(n\) lẻ) chia hết cho \(48\)

23 tháng 11 2019

Ta có: \(n^3+3n^2-n-3=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

vì n lẻ nên \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\)là tích 3 số chẵn liên tiếp suy ra chia hết cho 48

4 tháng 6 2023

 Ta có \(3n^3-1011⋮1008\)

\(\Leftrightarrow\left(3n^3-3\right)-1008⋮1008\) 

\(\Leftrightarrow3\left(n^3-1\right)⋮1008\) 

\(\Leftrightarrow n^3-1⋮336\)\(⋮48\) 

\(\Rightarrow\left(n-1\right)\left(n^2+n+1\right)⋮48\).

Do \(n^2+n+1\) là số lẻ với mọi \(n\inℤ\) nên suy ra được \(n-1⋮48\), đpcm.

4 tháng 6 2023

Giả sử n là số chẵn ta có: 3n3 là số chẵn ⇒ 3n3 - 1011 là số lẻ 

⇒ 3n3 - 1011 không chia hết cho 1008 vậy điều giả sử là sai 

⇒ n là số lẻ. Mặt khác ta cũng có:

3n3 - 1011 ⋮ 1008 ⇔ 3n3 - 3 -1008 ⋮ 1008 ⇔ 3n3 - 3 ⋮ 1008

⇔3(n3-1)⋮ 1008⇔ n3 - 1⋮ 336 ⇔ n3 - 1⋮ 48 ⇔(n-1)(n2+n+1)⋮48(1)

vì n là số lẻ (chứng minh trên) nên ta có: n2 + n + 1 là số lẻ 

⇔ n2 + n + 1 không chia hết cho 48 (2)

Kết hợp(1) và (2) ta có: n - 1 ⋮ 48 (đpcm)

 

 

11 tháng 9 2020

Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???

Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.

DD
26 tháng 11 2020

\(P=n^3+4n^2-20n-48=\left(n+2\right)\left(n-4\right)\left(n+6\right)\)

Với \(n=4\Rightarrow P=0⋮125\)(thỏa)

Với \(n< 4\)thử từng giá trị đều không thỏa. 

Vậy số \(n\)nhỏ nhất cần tìm là \(4\).

26 tháng 11 2020

    \(n^3+4n^2-20n-48\)

\(=n^3-4n^2+8n^2-32n+12n-48\)

\(=\left(n^3-4n^2\right)+\left(8n^2-32n\right)+\left(12n-48\right)\)

\(=n^2\left(n-4\right)+8n\left(n-4\right)+12\left(n-4\right)\)

\(=\left(n-4\right)\left(n^2+8n+12\right)\)

Nhận thấy n = 4 thì biểu thức trên bằng 0, chia hết cho 125.

Vậy số tự nhiên n nhỏ nhất là bằng 4 (thử với n = 1, 2, 3 đều không chia hết cho 125)

30 tháng 9 2015

phân tích thành n(n+2)(n+4).

vì n chẵn => n= 2k (k là số tự nhiên)

=> n(n+2)(n+4)= 8k(k+1)(k+2) chia hết cho 8 (1)

mặt khác k(k+1)(k+2) chia hết cho 2 và 3 ( tự mà ch.minh)

=>  k(k+1)(k+2) chia hết cho 6 (2)

từ(1) và (2) => đpcm