K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

=\(\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+........+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{7-3}{7.3}+\frac{11-7}{7.11}+........+\frac{\left(4n+3\right)-\left(4n-1\right)}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{7}{7.3}-\frac{3}{7.3}+\frac{11}{7.11}-\frac{7}{7.11}+......+\frac{4n+3}{\left(4n-1\right)\left(4n+3\right)}-\frac{4n-1}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7.}-\frac{1}{11}+......+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3-3}{3\left(4n+3\right)}\right)\)

\(=\frac{5}{4}.\frac{4n}{3\left(4n+3\right)}=\frac{4.n.5}{3\left(4n+3\right).4}=\frac{5n}{3\left(4n+3\right)}\)

ban nen xem lai dau bai di minh giai dung 100% do

ma neu dau bai ra nhu ket qua cua to thi tick cho minh nha

 

28 tháng 1 2016

Có ai giúp tôi với 

Tôi sắp hi sinh rồi

2 tháng 4 2018

2+12345678-5=

2 tháng 7 2018

\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)

Mk thực sự nghĩ đề hình như bị sai hay sao ấy!

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

29 tháng 6 2016

\(A=\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right).\left(4n+3\right)}\)

\(\frac{4}{5}.A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right).\left(4n+3\right)}\)

\(\frac{4}{5}.A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\)

\(\frac{4}{5}.A=\frac{1}{3}-\frac{1}{4n+3}\)

\(\frac{4}{5}.A=\frac{4n+3}{12n+9}-\frac{3}{12n+9}\)

\(\frac{4}{5}.A=\frac{4n}{12n+9}\)

\(A=\frac{4n}{12n+9}:\frac{4}{5}\)

\(A=\frac{4n}{12n+9}.\frac{5}{4}\)

\(A=\frac{5n}{12n+9}\)

Đề bài sai nha bn

Ủng hộ mk nha ^_^

13 tháng 3 2019

\(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{\left(4x+3\right)\left(4x+7\right)}=\frac{5}{12}\)(x phải khác \(-\frac{3}{4};-\frac{7}{4}\)nhé)

\(\Leftrightarrow\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4x+3\right)\left(4x+7\right)}=4.\frac{5}{12}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4x+3}-\frac{1}{4x+7}=\frac{5}{3}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{4x+7}=\frac{5}{3}\)

\(\Leftrightarrow\frac{4x+7-3}{3\left(4x+7\right)}=\frac{5\left(4x+7\right)}{3\left(4x+7\right)}\)

\(\Rightarrow4x+7-3=20x+35\)(chỗ này dùng dấu suy ra nhé)

\(\Leftrightarrow4x-20x=35-7+3\)

\(\Leftrightarrow-16x=31\)

\(\Leftrightarrow x=-\frac{31}{16}\)

V...

22 tháng 3 2017

a)

ta có:

\(\left\{{}\begin{matrix}\dfrac{b-a}{b-a}=1..\forall a\ne b\\\dfrac{b-a}{a.b}=\dfrac{1}{a}-\dfrac{1}{b}..\forall a,b\ne0\end{matrix}\right.\)(*)

\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+..+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(\left\{{}\begin{matrix}a=3n-1\\b=3n+2\end{matrix}\right.\)\(\Rightarrow b-a=3..\forall n\)

Thay (*) vào dãy A

\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-....+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{2.\left(3n+2\right)}\right)=\dfrac{n}{6n+4}=VP\rightarrow dpcm\)

B) tương tự

25 tháng 3 2017

Cảm ơn bạn