\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}&g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

Tổng quát ta có: Với \(n\inℕ\)ta có:

\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n}+\sqrt{n+1}}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)

Với \(n=2\)\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\)

Với \(n=3\)\(\Rightarrow\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\)

...........................

Với \(n=79\)\(\Rightarrow\frac{1}{\sqrt{79}+\sqrt{80}}=\sqrt{80}-\sqrt{79}\)

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{80}-\sqrt{79}\)

\(=\sqrt{80}-\sqrt{2}=\sqrt{40.2}-\sqrt{2}=\sqrt{40}.\sqrt{2}-\sqrt{2}\)

\(=\sqrt{2}.\left(\sqrt{40}-1\right)>\sqrt{2}.\left(\sqrt{36}-1\right)\)

\(=\sqrt{2}.\left(6-1\right)=5\sqrt{2}>4\)( đpcm )

27 tháng 6 2019

\(\frac{1}{\sqrt{1}+\sqrt{2}}+....\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\) (40 số)

................................................................\(>\frac{40}{10}=4\) 

=>đpcm

hc tốt

ko chắc lắm :)

20 tháng 4 2020

dhasuxbhfc;CX

19 tháng 7 2016

Ta có:

\(\frac{1}{\sqrt{1}+\sqrt{2}}>\frac{1}{\sqrt{2}+\sqrt{3}};\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{\sqrt{4}+\sqrt{5}};...;\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{80}+\sqrt{81}}\)

Do đó \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)\(>\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(=\frac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}\right)\)

\(=\frac{1}{2}\left(-\sqrt{1}+\sqrt{81}\right)=\frac{1}{2}\left(-1+9\right)=4\)

Suy ra đpcm.

19 tháng 7 2016

Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{79}}\)
Suy ra 
\(2A=2\left(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+....+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{79}\right)\)
\(=\sqrt{81}-1=9-1=8\Rightarrow2A>8\Leftrightarrow A>8\)( Đpcm)

7 tháng 9 2017

\(S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(\Leftrightarrow2S=\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(>\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(=\sqrt{81}-\sqrt{1}=9-1=8\)

\(\Rightarrow S>\frac{8}{2}=4\)

7 tháng 9 2017

chiu nam nay moi len lop 8

20 tháng 8 2017

Với mọi n thuộc N ta có :

\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)

Áp dụng ta được :

\(A=\sqrt{2}-\sqrt{1}+\sqrt{4}-\sqrt{3}+....+\sqrt{80}-\sqrt{79}\)

\(=\left(\sqrt{2}+\sqrt{4}+...+\sqrt{80}\right)-\left(\sqrt{1}+\sqrt{3}+...+\sqrt{79}\right)\)

Đến đây tịt òy ai vô giải nối với :((((((((((

20 tháng 8 2017

Ta có:

\(2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(=\sqrt{81}-\sqrt{1}=9-1=8\)

\(\Rightarrow A>4\)

    

NV
13 tháng 2 2020

\(\frac{1}{1+\sqrt{2}}=\frac{1}{2\sqrt{1}+2\sqrt{2}}+\frac{1}{2\sqrt{1}+2\sqrt{2}}>\frac{1}{2\sqrt{1}+2\sqrt{2}}+\frac{1}{2\sqrt{2}+2\sqrt{3}}\)

\(\Rightarrow\frac{1}{\sqrt{1}+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)=\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}\right)\)

Tương tự với các biểu thức còn lại rồi cộng vế với vế ta có:

\(VT>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)=\frac{1}{2}\left(\sqrt{81}-1\right)=4\)

25 tháng 9 2020

dùng cách trục căn thức là ra