K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)

\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)

\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{2010}{4^{2014}}< 4\)

\(\Rightarrow9S< 4\)

\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)

1 tháng 5 2017

Ta có :

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )

Lấy ( 2 ) - ( 1 ) ta được :

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

gọi     \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )

\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\)  ( 4 )

Lấy ( 4 ) - ( 3 ) ta được :

\(3B=4-\frac{1}{4^{2013}}\)

\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)

\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)

vậy \(S< 1\)

14 tháng 5 2015

Đây là bài chứng minh chứ ko phải tính đúng ko?

8 tháng 5 2016

Ta có : A = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...- 2014/3^2014

=> 3A = 1 - 2/3 + 3/3^2 - 4/3^3 +...- 2014/3^2013

=> 4A = 1- 1/3 + 1/3^2 -...- 1/3^2013 - 2014/3^2014

Xét B = 1-1/3+1/3^2 -...- 1/3^2013

=> 3B = 3 - 1 + 1/3 -...- 1/3^2012

=> 4B = 3- 1/3^2013

=> B = (3- 1/3^2013)/4 < 3/4

=> 4A < 3/4 - 2014/3^2014< 3/4

=> A < 3/16 < 3/15 =1/5

Vậy A < 1/5 (đpcm)

Chúc bạn học tốt

17 tháng 2 2018

\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}\)
\(\Rightarrow5S-S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}\)
\(S=\frac{1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}}{4}\)
Xét \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5A-A=1-\frac{1}{5^{2013}}\Leftrightarrow A=\frac{1-\frac{1}{5^{2013}}}{4}=\frac{1}{4}-\frac{1}{4.5^{2013}}\)
\(\Rightarrow S=\frac{1+\frac{1}{4}-\left(\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}\right)}{4}=\frac{5}{16}-\frac{\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}}{4}< \frac{1}{3}\)