K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Đặt \(S=\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{200!}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\)

\(\Rightarrow S< 1-\frac{1}{200}< 1\)

\(\Rightarrow S< 1\)( đpcm )

26 tháng 9

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

26 tháng 9

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

26 tháng 9

 

Từ "lạc trôi" có nghĩa là gì trong câu:

"Mây bềnh bồng lạc trôi/mượt mà như tuổi ngọc."

9 tháng 11 2017

Ta có: \(\left(2a+1\right)^2>\left(2a+1\right)^2-1\)

\(\Leftrightarrow\left(2a+1\right)^2>2a.\left(2a+2\right)\)

\(\Rightarrow\frac{1}{\left(2a+1\right)^2}< \frac{1}{2a.\left(2a+2\right)}\)(*)

ĐẶT \(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2a+1\right)^2}\)

Áp dụng (*), ta có:

\(A< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2a.\left(2a+2\right)}\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2a.\left(2a+2\right)}\right)\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2a}-\frac{1}{2a+2}\right)\)

\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2a+2}\right)\)

\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{4a+4}< \frac{1}{4}\)

Vậy ..........

9 tháng 11 2017

Có : 3^2 = 2.4+1

       5^2 = 4.6 +1

         ..........

       (2a+1)^2 = 2a.(2a+2)+1

=> VT < 1/2.4 + 1/4.6 + .... + 1/2a.(2a+2)

2VT < 2/2.4 + 2/4.6 + .... + 2/2a.(2a+2)

        = 1/2 - 1/4 + 1/4 - 1/6 + ..... 1/2a - 1/2a+2 = 1/2 - 1/2a+2 < 1/2

=> VT < 1/2 (ĐPCM)

22 tháng 8 2019

Đậu phộng rANG !

22 tháng 8 2019

Ko làm đc thì đừng trl linh tinh nhé -_-

7 tháng 4 2019

nà ní ko có quy luật à 

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

Lời giải:

Chứng minh vế thứ nhất:

Với mọi số tự nhiên $i< n$ ta có: $\frac{1}{n+i}> \frac{1}{n+n}$. Thay $i=1,2,...$ ta có:

$\frac{1}{n+1}>\frac{1}{n+n}$

$\frac{1}{n+2}>\frac{1}{n+n}$

.....

Do đó: $\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{n+n}+\frac{1}{n+n}+...+\frac{1}{n+n}=\frac{n}{n+n}=\frac{1}{2}$

(đpcm)

Vế thứ hai có vẻ không đúng lắm, vì $n$ càng tăng thì giá trị của tổng càng tăng theo nên mình nghĩ khi $n$ tiến tới vô cực thì tổng trên cũng vượt khỏi $\frac{3}{4}$