Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhầm đầu bài nhoa:
Phải là \(-\frac{100}{3^{100}}\)
a)
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-...-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^6}=A\)
2A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}\)
2A + A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^6}\)
3A = \(1-\frac{1}{2^6}=\frac{2^6-1}{2^6}\)(đpcm)
Gọi A là tổng trên, ta có:
\(\Rightarrow A=\frac{2-1}{2\text{!}}+\frac{3-1}{3\text{!}}+...+\frac{100-1}{100\text{!}}\)
\(A=\frac{2}{2\text{!}}-\frac{1}{2\text{!}}+\frac{3}{3\text{!}}-\frac{1}{3\text{!}}+...+\frac{100}{100\text{!}}-\frac{1}{100\text{!}}\)
\(A=1-\frac{1}{2\text{!}}+\frac{1}{2\text{!}}-\frac{1}{3\text{!}}+\frac{1}{3\text{!}}-...-\frac{1}{100\text{!}}\)
\(A=1-\frac{1}{100\text{!}}< 1\RightarrowĐPCM\)
đặt \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)
\(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(A=1-\frac{1}{100!}< 1\)
Ta có:\(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{3}{4}\left(đpcm\right)\)
Gọi \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)
Vì \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow D< \frac{3}{4}\left(đpcm\right)\)