Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
=1-1/20
=19/20
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{1999}-\frac{1}{2000}\)
\(=1-\frac{1}{2000}\)
\(=\frac{1999}{2000}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=2\left(1-\frac{1}{21}\right)=2.\frac{20}{21}=\frac{40}{21}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1999}+\frac{1}{2000}\)
\(S=1-\frac{1}{2000}\)
\(S=\frac{1999}{2000}\)
Đây là bài làm của mk :
S = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/1999 * 2000
=> S = 1 - 1/2 + 1/2 - 1/3 + ... + 1/1999 - 1/2000
=> S = 1 - 1 / 2000
=> S = 2000/2000 - 1/2000 = 1999/2000
Chúc bn học tốt !
...
= 1/2-1/3+1/3-1/4+...+ 1/19-1/20
= 1/2-1/20
=9/20
có phải như thế này ko bn
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{19.20}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}\)
A = \(\frac{9}{20}\)
\(B=\frac{1}{99.100}-\frac{1}{98.99}-\frac{1}{97.98}-.....-\frac{1}{1.2}=-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)
\(B=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=-\left(1-\frac{1}{100}\right)\)
B = \(-\frac{99}{100}\)
\(\frac{\frac{4}{17}-\frac{4}{45}+\frac{4}{156}}{\frac{3}{17}-\frac{3}{45}+\frac{3}{156}}=\frac{4.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}{3.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}=\frac{4}{3}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)
=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)
=> \(B=\frac{1007}{4032}\)
1/2 . P = 1/2.6 + 1/6.10 + 1/10.14 + ... + 1/198.202
4.1/2. P= 4/2.6 + 4/6.10 + 4/10.14 + ... + 4/198.202
2P=1/2-1/6+1/6-1/10+1/10-1/14+...+1/198-1/202
2P=1/2-1/202=50/101
P=50/101:2=50/101.1/2=25/101
\(VT=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{97!}-\frac{1}{99!}+\frac{1}{98!}-\frac{1}{100!}\)
\(VT=2-\frac{1}{100!}< 2\)đpcm
Ta xét vế trái nha
\(VT=\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+.....+\frac{99.100-1}{100}\)
\(=1-\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}......+\frac{1}{98}-\frac{1}{100}\)
\(=2-\frac{1}{100}\)
\(=>VT< VP\)
=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000
=1/1-1/2000
=1999/2000<3/4
Bài này hình như sai đề, kết quả khi tình ra dc là 1999/2000 làm sao nhỏ hơn 3/4 dc bạn