\(\forall m,n\in Z\)thì

A=\(n^3+11n⋮6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

Ta có:\(A=n^3+11n=n^3-n+12n\)

=\(n\left(n^2-1\right)+12n\)

Lại có: \(n^2-1=\left(n-1\right)\left(n+1\right)\)

\(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)

Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\).

\(12n⋮6\) \(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)\(⋮6\)

\(\Rightarrow A=n^3+11n⋮6\left(đpcm\right)\)

11 tháng 1 2017

ko cần nữa nh tui nhầm bài OK

4 tháng 9 2018

Ta có:

\(n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(n^2+5n+6\right)\)

\(=n\left(n+1\right)\left(n^2+3n+2n+6\right)\)

\(=n\left(n+1\right)\left[n\left(n+3\right)+2\left(n+3\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì tích 4 số nguyên liên tiếp luôn chia hết cho 24

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24

21 tháng 1 2018

Bài 1 : 

Có : P = n^2+n+2 = n.(n+1)+2

Ta thấy n và n+1 là 2 số tự nhiên liên tiếp

=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6

=> P có tận cùng là : 2 hoặc 4 hoặc 8 

=> P ko chia hết cho 5

=> ĐPCM

Tk mk nha

21 tháng 1 2018

Bài 2 : 

Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6

= a.(a+1).(a+2)/6

Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> a.(a+1).(a+2) chia hết cho 2 và 3

=> a.(a+1).(a+2) chia hết cho 6

=> A thuộc Z

Tk mk nha

6 tháng 11 2017

Help me!

Mai mình cần rồi!

30 tháng 3 2018

Ta có :\(n^3-13n\)

\(=\left(n^3-n\right)-12n\)

\(=n\left(n^2-1\right)-6\left(2n\right)\)

\(=\left(n-1\right)n\left(n+1\right)-6\left(2n\right)\)

Vì (n-1);n;n+1 là ba số tự nhiên liên tiếp =>(n-1)n(n+1)\(⋮\)2 và 3;

=>(n-1)n(n+1)\(⋮\)6

Mà 6(2n)\(⋮\)6

=>(n-1)n(n+1)-6(2n)\(⋮6\)

\(\Rightarrow n^3-13n⋮6\)

23 tháng 2 2019

Ta có: a^5 - a = a( a4 - 1 ) 
= a( a2 - 1 )( a2 + 1 ) 
= a( a -1 )( a + 1 )( a2 - 4 + 5 ) 
= a( a - 1 )( a + 1 )( a2 - 4 ) + a( a - 1 )( a + 1 ).5 
= ( a - 2 )( a - 1 )a( a + 1 )( a + 2 )+ a( a - 1) ( a + 1 ).5 
Vì  ( a - 2)( a - 1)a( a + 1)( a + 2 ) chia hết cho 30 
và a( a - 1)( a +1)5 chia hết cho 30 
Nên ( a - 2)( a - 1)a( a + 1)( a + 2 )+ a( a - 1 )( a + 1 )5 chia hết cho 30 
Mà 30 = 5.6

Vậy a5 - a chia hết cho 6 với mọi a thuộc Z ( đpcm)

Hok tốt !

23 tháng 2 2019

thank

11 tháng 7 2020

a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)

\(A=x\cdot\left(-1\right)\cdot x\)

\(A=-x^2\)

b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)

Xét :

\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)

\(\frac{x}{8}=6\Leftrightarrow x=48\)

\(\frac{y}{12}=6\Leftrightarrow y=72\)

\(\frac{z}{15}=6\Leftrightarrow z=90\)

\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)

11 tháng 7 2020

ta có

 \(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)

ta lại có

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)

\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)

ta kết hợp (1) và (2) 

\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)

theo tính chất dãy tỉ số = nhau

có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)

thay vào

5 tháng 8 2019

a) Qui nạp :

\(A=10^n+18n-1\)

+) Xét \(n=1\Leftrightarrow A=27⋮27\)

+) Xét \(n=2\Leftrightarrow A=135⋮27\)

Giả sử biểu thức đúng với \(n=k\)

Khi đó ta có : \(A=10^k+18k-1⋮27\)(*)

Để kết thúc bài toán ta cần chứng minh biểu thức đúng với \(n=k+1\)

Xét \(A=10^{k+1}+18\left(k+1\right)-1\)

\(A=10^k\cdot10+18k+18-1\)

\(A=10\left(10^k+18k-1\right)-162k+27\)

\(A=10\left(10^k+18k-1\right)-27\left(6k-1\right)\)

Theo (*) ta có \(10\left(10^k+18k-1\right)⋮27\)

Mặt khác \(-27\left(6k-1\right)⋮27\)

\(\Rightarrow A=10\left(10^k+18k-1\right)-27\left(6k-1\right)⋮27\)

Ta có đpcm

b) \(n^3-n=n\left(n-1\right)\left(n+1\right)\)

Ta có \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số tự nhiên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)⋮2\\n\left(n-1\right)\left(n+1\right)⋮3\\\left(2;3\right)=1\end{matrix}\right.\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\cdot3=6\)( đpcm )

bạn có thể giải thik đc ko

hehe