Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)
\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)
\(\Rightarrow A>0\left(đpcm\right)\)
A = x2 + 5y2 + 2x - 4xy - 10y + 14
A = x2 - x2 + x2 + y2 + 4y2 + 2x - 4xy - 10y + 14
A = ( y2 - 10y + 25 ) - ( x2 - 2x + 1 ) + ( x2 - 4xy + 4y2 ) + x2 + 10
A = ( y - 5 )2 - ( x - 1 )2 + ( x - 2y )2 + x2 + 10 \(\ge\)10
Dấu " = " xảy ra \(\Leftrightarrow\)y - 5 = 0 và x - 1 = 0
\(\Rightarrow\)y = 5 và x = 1
Min A = 10 \(\Leftrightarrow\)y = 5 và x = 1
Nhóm các hạng tử để được bình phương nhé! (Dùng hằng đẳng thức số 1 và 2 đó!)
x^2+5y^2+2x-4xy-10y+14
=[x^2+2x(1-2y)+(1-2y)^2]+y^2-6y+13
=(x+1-2y)^2+(y^2-2y.3+9)+4
=(x+1-2y)^2+(y-3)^2+4.
Ta có (x+1-2y)^2 > hoặc=0 với mọi x,y thuộc R
và (y-3)^2 > hoặc=0 với mọi y thuộc R
=> (x+1-2y)^2+(y-3)^2+4 > hoặc =4 với mọi x,y thuộc R
=> (x+1-2y)^2+(y-3)^2+4 >0 với mọi x,y thuộc R.
ko cần thuộc r đâu
đề bài ko đề cập đến