Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3}-\dfrac{m}{n}>0\Leftrightarrow\sqrt{3}>\dfrac{m}{n}\Leftrightarrow3n^2>m^2\)
Vì \(m,n\ge1\) nên \(3n^2\ge m^2+1\)
Với \(3n^2=m^2+1\Leftrightarrow m^2+1⋮3\Leftrightarrow m^2\) chia 3 dư 2 (vô lí)
\(\Leftrightarrow3n^2\ge m^2+2\)
Lại có \(4m^2>1\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2=m^2+1+\dfrac{1}{4m^2}< m^2+2\)
\(\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2< 3n^2\Leftrightarrow m+\dfrac{1}{2m}< n\sqrt{3}\\ \Leftrightarrow n\sqrt{3}-m>\dfrac{1}{2m}\)
Cho đường thẳng (d): (y=(2m+1)x-2) với m là tham số và (m\ne-\frac{1}{2}.) Khoảng cách từ (A(-2;1)) đến đường thẳng d được tính theo công thức:
[\sqrt{(-2-(2m+1)(-2))^2+(1-(2m+1)(-2))^2}]
[\sqrt{(16m^2+20m+4)^2+(24m+4)^2}]
[\sqrt{256m^4+640m^3+320m^2+576m^2+960m+16}]
[\sqrt{256m^4+1216m^3+1536m^2+960m+16}]
[\sqrt{16m^2(16m^2+79m+96)+4(16m^2+79m+96)}]
[\sqrt{(4m+7)^2(4m+16)}]
Theo đề bài, khoảng cách này bằng (\frac{1}{\sqrt{2}}.) Do đó, ta có phương trình:
[\sqrt{(4m+7)^2(4m+16)}=\frac{1}{\sqrt{2}}]
Từ đây, ta được phương trình bậc hai:
[(4m+7)^2(4m+16)=1 ]
Giải phương trình này, ta được hai nghiệm:
[m=-\frac{3}{2}\pm\frac{\sqrt{3}}{2} ]
Do (m\ne-\frac{1}{2},) ta có nghiệm duy nhất là:
[m=-\frac{3}{2}+\frac{\sqrt{3}}{2}=\frac{5}{7} ]
Vậy, tổng các giá trị của m thỏa mãn bài toán là [\frac{5}{7}.]
m = 1 thì \(\sqrt{44+1+1}=\sqrt{46}\)
Không phải số nguyên
Đề sai: Ví dụ m = 1 => B = \(\sqrt{46}\) không là số nguyên
Sửa đề: B = \(\sqrt{444...4+444...4+1}\)
B2 = 444....4 + 444....4 + 1
Đặt k = 111...1 (m chữ số 1 ) => 9k = 999..9 (m chữ số 9 ) = 10m - 1 => 10m = 9k + 1
Ta có : 999...9 (2m chữ số 9 ) = 9 x 111....1 (2m chữ số ) = 102m - 1
=> 111..1 (2m chữ số 1) = \(\frac{10^{2m}-1}{9}\)=> 444...4 (2m chữ số 4 ) = \(\frac{4.\left(10^{2m}-1\right)}{9}=\frac{4.\left(\left(9k+1\right)^2-1\right)}{9}=\frac{4}{9}.\left(81k^2+18k\right)=36k^2+8k\)
Ta có: B2 = 36k2 + 8k + 4.k + 1 = 36k2 + 12 k + 1 = (6k + 1)2 => B = 6k + 1 là số nguyên => đpcm