Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=n^3+11n=n^3-n+12n\)
=\(n\left(n^2-1\right)+12n\)
Lại có: \(n^2-1=\left(n-1\right)\left(n+1\right)\)
\(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮6\).
Mà \(12n⋮6\) \(\Rightarrow A=n\left(n-1\right)\left(n+1\right)+12n\)\(⋮6\)
\(\Rightarrow A=n^3+11n⋮6\left(đpcm\right)\)
Ta có:
\(n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n^2+3n+2n+6\right)\)
\(=n\left(n+1\right)\left[n\left(n+3\right)+2\left(n+3\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì tích 4 số nguyên liên tiếp luôn chia hết cho 24
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24
Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Cho mình làm lại nha :
Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn)
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left(3^n.10\right)-\left(2^n.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
\(=\left(3^n-2^{n-1}\right).10⋮10\)
Tương tự nhé
b: Giả sử B chia hết cho 49
=>B chia hết cho 7
=>(n+2)(n+9)+21 chia hết cho 7
=>(n+2)(n+9) chia hết cho 7
Vì n+9-n-2=7 chia hết cho 7 nên n+9 và n+2 đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
=>(n+2)(n+9)+21 chia hết cho 49(vô lý)
=>B không chia hết cho 49
a: \(A=n^3-n-6n\)
\(=n\left(n-1\right)\left(n+1\right)-6n\)
Vì n;n-1;n+1 là 3 số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
hay A chia hết cho 6
Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
Help me!
Mai mình cần rồi!