Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)
\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)
\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)
\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)
Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)
\(\Rightarrow x+66=0\)
\(\Rightarrow x=0-66=-66\)
Auto làm nốt câu b
a, Cộng cả 2 vế với 2
Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)
\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)
=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)
=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)
Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)
=> \(x=-65\)
b , Lm tương tự như Câu a
Chúc bn hok tốt
a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)
b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
= \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ...
\(A<\frac{102}{3^{102}}.102=\frac{102^2}{3^{102}}<\frac{3}{4}\)
là sao , đinh tuấn việt ? ko hiểu