Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.
\(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(\)\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Chứng minh : \(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)chia hết cho 5 và 6
\(a\left(a-1\right)\left(a+1\right)\)chia hết cho 6
Mà (5,6) = 1
\(\Rightarrow a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)chia hết cho 30
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)chia hết cho 30
\(\Rightarrow a^5-a\) chia hết cho 30 (ĐPCM)
a5-a = a . ( a4 -1 ) = a(a-1)(a+1)(a2+1)
a(a-1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2
(a-1)a(a+1) là tích ba số tự nhiên liên tiếp nên chia hết cho 3
mà (2,3)=1 ⇒ a(a-1)(a+1)(a2+1) ⋮ (2.3) = 6
*Nếu a = 5q (q ∈ N) =>a(a-1)(a+1)(a2+1) ⋮ 5
Nếu a = 5q + 1 => a - 1 = 5q
Nếu a = 5q + 2 => a2 + 1= (5q+2)2+1=25q2 +5
Nếu a = 5q+3 => a2 + 1= (5q+3)2+1=25q2 +10
Nếu a = 5q+4 => a +1 = 5q +5
Vậy a5 -5 chia hết cho30 với a thuộc Z