K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

\(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\Rightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng) \(\Rightarrow\) đpcm

31 tháng 5 2021

Áp dụng bất đẳng thức Holder ta có:

\(\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ca}}+\dfrac{c}{\sqrt{c^2+8ab}}\right)\left(a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\right)\ge\left(a+b+c\right)^3\).

Do đó ta chỉ cần chứng minh \(\left(a+b+c\right)^3\ge a\left(a^2+8bc\right)+b\left(b^2+8ca\right)+c\left(c^2+8ab\right)\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge24abc\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\). Đây là một bđt rất quen thuộc

Không Holder thì Svacxo nha :v

Áp dụng BĐT Svacxo ta có :

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}}\)

Ta có sẽ đi chứng minh :

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)

Thật vậy theo Bunhiacopxki có :

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)

\(\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

Ta lại đi chứng minh :

\(a^3+b^3+c^3+24abc\le\left(a+b+c\right)^3\)

\(\Leftrightarrow24abc\le3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Đây là BĐT đúng )

Do đó nhân vào ta có đpcm.

 

4 tháng 8 2016

bài toán cực trị có ẩn trong đoạn là pahir cẩn thận này @
\(0\le a,b,c\le1\)\(\Rightarrow a\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a-ab-a^2+a^2b\ge0\)
\(\Leftrightarrow a^2b\ge ab+a^2-a\)
Tương tự \(b^2c\ge bc+b^2-b;c^2a\ge ca+c^2-c\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+bc+ca+ab-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc+a^2+b^2+c^2\ge a^2+b^2+c^2\)
dấu = xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\hept{ }\left(0,1,1\right),\left(0,0,1\right),\left(1,0,1\right)\left(1,1,0\right)\left(0,1,0\right),\left(1,0,0\right)\left\{\right\}\)

4 tháng 8 2016

Do : \(\hept{\begin{cases}a\le1\Rightarrow1-a\ge0\\b\le1\Rightarrow1-b\le0\\c\le1\Rightarrow1-c\le0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0}\)

\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2-2=\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\)

6 tháng 9 2017

ko có đk à

15 tháng 6 2017

KHÔNG MẤT TÍNH TÔNG QUÁT, ĐẶT \(a< _=b< _=c\)

TA CÓ:

\(a^2+b^2+c^2+abc=0\)

=> \(a^2+b^2+c^2=-abc\)

DO \(a< _=b< _=c\)

=> \(a^2+b^2+c^2=-abc>_=a^2+a^2+a^2=3a^2\)

=> \(-bc>_=3a\)

XÉT HAI TRƯỜNG HỢP:

TH1: a khác 0

=> \(\frac{-bc}{a}>_=3\)

TA CÓ \(a^2+b^2+c^2=-abc\)

\(a^2+b^2+c^2>0\left(a#0\right)\)

=> - abc > 0

=> Hoặc a âm , b và c lớn hơn 0 , hoặc a , b , c âm

=> \(\frac{-bc}{a}< 0\)

MÀ \(\frac{-bc}{a}>_=3\)

=> LOẠI 

TH2: a = 0

=> thỏa mãn

=> \(b^2+c^2+bc=0\)

=> \(b^2+c^2+\left(b+c\right)^2=0\)

=> b = c = 0

VẬY a = b = c = 0

16 tháng 6 2017

Sai rồi b. Làm lại đi b

NV
23 tháng 8 2021

Chính bài của em:

Cho \(a,b,c\ge1\). CMR: \(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)+2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}... - Hoc24

24 tháng 8 2021

Dạ xin lỗi thầy em ko để ý bucminh

2 tháng 12 2021

Câu 1:

a, Giả sử \(A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{a}{b}-\dfrac{b}{a}\ge0\)

\(\Leftrightarrow A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge0\)

Mà \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow A\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\cdot\dfrac{a}{b}-2\cdot\dfrac{b}{a}+2\ge0\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}-2\cdot\dfrac{a}{b}+1\right)+\left(\dfrac{b^2}{a^2}-2\cdot\dfrac{b}{a}+1\right)\ge0\\ \Leftrightarrow\left(\dfrac{a}{b}-1\right)^2+\left(\dfrac{b}{a}-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Dấu \("="\Leftrightarrow a=b\)

b, \(B=\dfrac{a^4}{b^4}+\dfrac{b^4}{a^4}-2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\right)+2+\left(\dfrac{a^2}{b^2}+2+\dfrac{b^2}{a^2}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-4\)

\(B=\left(\dfrac{a^4}{b^4}-2\cdot\dfrac{a^2}{b^2}+1\right)+\left(\dfrac{b^4}{a^4}-2\cdot\dfrac{b^2}{a^2}+1\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-2\\ \Leftrightarrow B=\left(\dfrac{a^2}{b^2}-1\right)^2+\left(\dfrac{b^2}{a^2}-1\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\dfrac{a}{b}+\dfrac{b}{a}-4\\ \Leftrightarrow B\ge0+0+0+\dfrac{a^2+b^2}{ab}-4\ge\dfrac{2ab}{ab}-4=2-4=-2\)

Dấu \("="\Leftrightarrow\left(a;b\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Câu 2:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=M^2\\ \Leftrightarrow M^2\le25\cdot25\\ \Leftrightarrow M\le25\)

Dấu \("="\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{25}{25}=1\Leftrightarrow\left\{{}\begin{matrix}x^2=9\\y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy \(M_{max}=25\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)