K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

a^2 + b^2 - 2ab = 0

=> ( a-b)^2=0

=> a-b=0

=> a=b

3 tháng 11 2016

Ta có:

             a^2 + b^2 = 2ab

     =>    a^2 + b^2 - 2ab = 0  

              (a-b)^2  = 0

 =>   a=b

7 tháng 7 2019

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)

15 tháng 10 2021

Chọn B

15 tháng 10 2021

B

20 tháng 10 2016

(a-b)2+(b-c)2+(c-a)2=4(a2+b2+c2-ab-ac-bc)

<=>a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=4a2+4b2+4c2-4ab-4ac-4bc

<=>2a2+2b2+2c2-2ab-2bc-2ac-4a2-4b2-4c2+4ab+4ac+4bc=0

<=>2ab+2ac+2bc-2a2-2b2-2c2=0

<=>-[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=0

<=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2}+\left(a-c\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)

<=>a-b=b-c=a-c

<=>a=b=c(đpcm)

chứng minh 

nhân phân phối ra là xong

chúc học tốt!!!!!!!!!!

12 tháng 6 2019

#)Trả lời :

7 tháng 7 2019

#)Giải :

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b=2a^2+2b^2\)

\(\Leftrightarrow2ab=a^2+b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b\left(đpcm\right)\)

7 tháng 7 2019

Ta có:\

 \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)\(b^2\) nha bạn)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(a=b\)

Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

Thì \(a=b\)

Bạn có thể giải ngắn hơn nếu áp dụng BĐT Cauchy

Do \(a^2\ge0;b^2\ge0\)

suy ra áp dụng BĐT cauchy ta có

\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi và chỉ khi  a=b)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)\(b^2\) nha bạn)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(a=b\)

Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

Thì \(a=b\)

17 tháng 12 2018

ĐK: a;b>0

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)

                                                                                             đpcm

14 tháng 8 2019

p=(a^2 - 2ab + b^2) x ( a^2 + 2ab + b^2)

p=(a-b)^2 x (a+b)^2