Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)
\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)
b) 270 + 370 = (22)35 + (32)35 = 435 + 935
\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)
\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)
phần a sai đề nha bạn
b,Ta có
\(2\equiv2\left(mod13\right)\)
\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)
\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)
\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)
\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)
Lại có:
\(3\equiv3\left(mod13\right)\)
\(\Rightarrow3^6\equiv1\left(mod13\right)\)
\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)
\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)
\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)
c, Ta có
\(17\equiv-1\left(mod18\right)\)
\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)
Lại có
\(19\equiv1\left(mod18\right)\)
\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)
\(\Rightarrow17^{19}+19^{17}⋮18\)
4. \(A=\left(a^{2012}-a^{2008}\right)+\left(b^{2012}-b^{2008}\right)+\left(c^{2012}-c^{2008}\right)\)
\(=a^{2008}\left(a^4-1\right)+b^{2008}\left(b^4-1\right)+c^{2008}\left(c^4-1\right)\)
\(=a^{2008}\left(a^2-1\right)\left(a^2+1\right)+b^{2008}\left(b^2-1\right)\left(b^2+1\right)+c^{2008}\left(c^2-1\right)\left(c^2+1\right)\)
\(=a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)
Dễ thấy a-1, a, a+1 là 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2, một số chia hết cho 3 \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
Tương tự đối với b và c ta suy ra \(A⋮6\) (1)
Xét các số dư của a cho 5
- Nếu \(a⋮5\) thì \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 1 thì \(\left(a-1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 2 hoặc 3 thì \(\left(a^2+1\right)⋮5\) hay \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
- Nếu a chia 5 dư 4 thì \(\left(a+1\right)⋮5\) nên \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\)
Như vậy \(\left[a^{2007}\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\right]⋮5\) \(\forall a\in Z_+\)
Tương tự \(\left[b^{2007}\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)\right]⋮5\)
và \(\left[c^{2007}\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\right]⋮5\)
Do đó \(A⋮5\) (2)
Từ (1) và (2) suy ra \(A⋮30\)
câu dễ trước nhé:
B = 1 + 2+ 3 +4 +5 +......+ 100
B có số hạng là:
(100 - 1 ) : 1 + 1 = 100 số hạng
B có tổng là:
(100 + 1 ) x 100 : 2 = 5050
A = 13 + 23 + 33 +.......+1003 A= 1 + ( 2 -1 ) x2 x ( 2 + 1) + 2 +( 3 - 1) x 3 x( 3 + 1 ) +3 +.....+( 100-1) x 100 x ( 100 +1 ) + 100 ( vì 13 =1, 2 3 = ( 2-1 ) x 2 x ( 2 + 1) +2 ,....)
A =1 + 1x 2 x3 + 2 + 2 x 3 x 4 + 3 +........+ 99 x 100 x 101 + 100
A = ( 1 x 2 x3 + 2 x3 x4 + x3x4 x5 +.....+ 99 x100 x101) - ( 1 +2 +3+ 4 +....+ 100)
đặt M = 1 x 2 x3 + 2 x3 x4 + ......+ 99 x100x101
M x 4 = 1 x2 x3 x4 + 2 x3 x4 x4 + ......+ 99 x100 x101 x4
M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x( 5 - 1) +........+ 99 x 100 x 101 x ( 102 - 98)
M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x 5 - 1 x 2 x3 x4 +.....+ 99 x 100 101 x102 - 98 x99 x100 x101
M x 4 = 99 x100 x101 x102
M x 4 =101989800
M = 101989800: 4
M = 25497450
đặt N = 1 + 2 +3 + 4 + 5 +.....+ 100
đáp án là câu B phía trên = 5050
A = M-N = 25497450 - 5050=25487350
ta có A = 13 +23+....+1003
B = 1 + 2 + 3 + ...+ 100
vì mỗi số hạng của A đều là lập phương của 1 số hạng ở B
theo tính chất chia hết của tổng thì số hạng nào cũng chia hết cho 1 số thì tổng cũng chia hết cho só đó
vậy A chia hết cho B
b: \(2^{70}+3^{70}=4^{35}+9^{35}=\left(4+9\right)\cdot A⋮13\)