K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-.........-\frac{1}{2020^2}\)

Ta có: \(2^2=2.2< 2.3\)\(\Rightarrow\frac{1}{2.2}>\frac{1}{2.3}\)\(\Rightarrow\frac{1}{2^2}>\frac{1}{2.3}\)

Tương tự, ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\), ........... , \(\frac{1}{2020^2}>\frac{1}{2020.2021}\)

\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-...........-\frac{1}{2020.2021}\)

\(=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-.......-\left(\frac{1}{2020}-\frac{1}{2021}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-..........-\frac{1}{2020}+\frac{1}{2021}\)

\(=1-\frac{1}{2}+\frac{1}{2021}\)\(=\frac{1}{2}+\frac{1}{2021}=\frac{2023}{4042}>\frac{1}{2020}\)

\(\Rightarrow A>\frac{1}{2020}\)

10 tháng 2 2020

Đặt \(K=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2020}\)

\(=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2020.2021}{2}}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2020.2021}\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\right)\)

\(=2\left(1-\frac{1}{2021}\right)=2.\frac{2020}{2021}=\frac{4040}{2021}\)

\(\Rightarrow D=\frac{2020}{\frac{4040}{2021}}=\frac{2021}{2}\)

9 tháng 10 2019

 \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{2020}\left(1+2+3+...+2020\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{2020}.\frac{2020.2021}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{2021}{2}\)

\(=\frac{\left[\left(2021-2\right)+1\right]\left(2021+2\right)}{2}:2\)

\(=1021615\)

23 tháng 2 2020

Bn lm đc chx

8 tháng 3 2020

chx ạ

23 tháng 2 2020

đề bài có chắc đúng

23 tháng 2 2020

Vũ Minh TuấnPhạm Lan HươngPhạm Thị Diệu HuyềnNguyễn Lê Phước ThịnhAkai Harumasoyeon_Tiểubàng giảiNguyễn Ngọc Lộc

25 tháng 10 2019

Gọi biểu thức là A

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\)

⇒ 3A-A=2A=\(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\)-\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2020}}\)

⇒ 2A=1-\(\frac{1}{3^{2020}}\)

⇒ A= \(\frac{1}{2}-\frac{1}{3^{2020}.2}\)

⇒ A< \(\frac{1}{2}\)

18 tháng 11 2019

Ta có : M = \(\frac{x+y}{z}+\frac{x+z}{y}=\frac{y+z}{x}\)

\(\Rightarrow M+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)\)

\(\Rightarrow M+3=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(\Rightarrow M+3=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M+3=2020.\frac{1}{202}\)

=> M + 3 = 10

=> M = 7

Vậy M = 7

18 tháng 11 2019

b) Ta có : \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)

\(=\frac{2}{3.3}+\frac{2}{5.5}+\frac{2}{7.7}+...+\frac{2}{2017.2017}\)

\(< \frac{2}{\left(3+1\right)\left(3-1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+\frac{2}{\left(7-1\right)\left(7+1\right)}+...+\frac{2}{\left(2017-1\right)\left(2016-1\right)}\)

\(=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}\)

\(=\frac{1008}{2018}=\frac{504}{1009}\)

=> \(A< \frac{504}{1009}\left(\text{ĐPCM}\right)\)