Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số có hai chữ số tận cùng bằng 25 \(⋮\) 25. Một số \(⋮\) 4 và 25 thì \(⋮\) 100( 4 và 25 nguyên tố cùng nhau)
Mặt khác: \(\left(2^{10}\right)+1⋮25\)và \(2^9+2^{99}⋮4\)
Ta có:
\(2^9-2^{99}=\left(2^9+2^{19}\right)-\left(2^{19}+2^{29}\right)+\left(2^{29}+2^{39}\right)-...+...-\left(2^{79}+2^{89}\right)+\left(2^{89}+2^{99}\right)\)
\(=\left(1+2^{10}\right)\cdot\left(2^9-2^{19}+2^{29}-2^{39}+....+2^{99}\right)\)
\(\Rightarrow2^9+2^{99}⋮25\)
\(\Rightarrow2^9+2^{99}⋮100\)
Bài làm
Cách 1: ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
vao Chứng minh rằng 2^9+2^99 chia hết cho 100 toán dành cho ...
\(A=2^9+9^{99}\)
\(A=\left(2^4\right)^2.2+\left(9^2\right)^{49}.9\)
\(A=\left(...6\right)^2.2+\left(...1\right)^{49}.9\)
\(A=\left(....2\right)+\left(...9\right)̸\)
\(A=\left(...1\right)\)không chia hết cho 10