\(\cos2\alpha=\cos^2\alpha-\sin^2\alpha\)

b)\(\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa

b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)

c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)

a: \(\sin2a=\sin\left(a+a\right)\)

\(=\sin a\cdot\cos a+\cos a\cdot\sin a\)

\(=2\sin a\cdot\cos a\)

b: \(\cos2a=\cos^2a-\sin^2a\)

\(=1-\sin^2a-\sin^2a\)

\(=1-2\sin^2a\)

9 tháng 8 2020

giả sử tam giác ABC vuông tại A, \(\widehat{B}=\alpha=45^o\), kẻ trung tuyến AM

do \(\alpha< 45^o\Rightarrow2\alpha< 90^o\)và \(\widehat{C}=90^o-\alpha>45^o>\widehat{B}\)

tam giác ABC vuông tại A, trung tuyến AM nên \(MA=MB=MC=\frac{BC}{2};\widehat{AMC}=2\alpha\)(theo tính chất góc ngoài)

hạ HA _|_ BC trong tam giác AHM vuông tại M ta có \(\sin\alpha=\frac{AH}{AM}=\frac{2AH}{BC}\left(1\right)\)

trong tam giác AHB vuông tại H ta có \(\sin\alpha=\frac{AH}{AB}\left(2\right)\)

trong tam giác ABC vuông tại A ta có \(\sin\alpha=\frac{AB}{BC}\left(3\right)\)

từ (1) (2) và (3) => \(\sin2\alpha=2\cdot\frac{AH}{AB}\cdot\frac{AB}{BC}=2\sin\alpha\cos\alpha\)

9 tháng 8 2020

tam giác AHM vuông tại H ta có \(\cos2\alpha=\frac{HM}{AM}=\frac{2HM}{BC}\left(4\right)\)

\(\cos^2\alpha-\sin^2\alpha=\frac{AB^2}{BC^2}-\frac{AC^2}{BC^2}=\frac{HB\cdot BC-HC\cdot BC}{BC^2}=\frac{HB-HC}{BC}=\frac{2HM}{BC}\left(5\right)\)

từ (4) và (5) suy ra \(\sin2\alpha=\cos^2\alpha-\sin^2\alpha\)

6 tháng 8 2020

Nếu bn phải vẽ hình và chứng minh thì đây nhé

  B C A H M b c h

\(\Delta ABC\)vuông tại A, đường cao AH, trung tuyến AM. Đặt \(\widehat{C}=\alpha\)\(AH=h,\)\(AC=b,\)\(BC=a\)

\(\Rightarrow\Delta AMC\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}=\alpha\)

Vì \(\widehat{AMH}\)là góc ngoài của \(\Delta AMC\)\(\Rightarrow\widehat{AMH}=\widehat{MAC}+\widehat{C}=2\alpha\)

Ta có:

\(\sin\alpha=\sin C=\frac{AH}{AC}=\frac{h}{b}\)    (1)

\(\cos\alpha=\cos C=\frac{AC}{BC}=\frac{b}{a}\)   (2)

\(\sin2\alpha=\sin AMH=\frac{AH}{AM}=\frac{h}{\frac{a}{2}}=\frac{2h}{a}\)  (3)

Từ (1) và (2) suy ra: \(2\sin\alpha\cdot\cos\alpha=2\cdot\frac{h}{b}\cdot\frac{b}{a}=\frac{2h}{a}\)(4)

Từ (3) và (4) suy ra đpcm. Câu dưới mình đang làm bạn chờ xíu nhé ^^

5 tháng 8 2020

Nếu mình nhớ đúng thì công thức này lên lớp 10 mới học đúng không?

\(\sin2\alpha=\sin\left(\alpha+\alpha\right)=\sin\alpha\cos\alpha+\cos\alpha\sin\alpha=2\sin\alpha\cos\alpha\)

\(\cos2\alpha=\cos\left(\alpha+\alpha\right)=\cos\alpha\cos\alpha-\sin\alpha\sin\alpha=\cos^2\alpha-\sin^2\alpha=\left(1-\sin^2\alpha\right)-\sin^2\alpha\)

\(=1-2\sin^2\alpha\)