Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a\right)5^{2003}+5^{2002}+5^{2001}=5^{2001}\left(5^2+5+1\right)=5^{2001}\left(25+5+1\right)=5^{2001}.31\)
Luôn luôn chia hết cho 31
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
cái này mới đúng
a) 310+311
= 310.1+ 310.3
= 310.(1+3)
= 310.4
=>achia hết cho 4
tik cho miu đã rùi mik giải tiếp cho
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
a)Ta có :74n-1=...1-1=...0\(⋮\)5
Vậy 74n-1\(⋮\)5
b)Ta có 34n+1+2=34nx3+2=...1x3+2=...3+2=...5\(⋮\)5
Vậy ...
c)Ta có :24n+1+3=24nx2+3=...6x2+3=...2+3=...5\(⋮\)5
Vậy ...
d)Ta có :24n+2+1=24nx22+1=...1x4+1=...4+1=...5\(⋮\)5
Vậy ...
e)Ta có :92n+1+1=92nx9+1=...1x9+1=...9+1=...0\(⋮\)10
Vậy
f)mik ko biết làm
g)mik cũng ko biết làm
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31
b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8
c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28
a,
$5^5-5^4+5^3$
$=5^3(5^2-5+1)$
$=5^3 . 21$
Mà $21 \vdots 7$
$\to 5^3 . 21 \vdots 7$
Nên $5^5-5^4+5^3 \vdots 7$ ( đpcm)
a) 55 - 54 + 53 = 53 ( 52 - 5 + 1)
= 53 . 21
Mà 21 chia hết cho 7 nên 53 . 21 chia hết cho 7
b) 76 + 75 - 74 = 74( 72 + 7 -1)
= 74 . 55
Mà 55 chia hết cho 11 nên 74 . 55 chia hết cho 11
Ý c tương tự như trên nhé!!
d) 106 - 57 = (2.5)6 - 57
= 26 . 56 - 57
= 56 ( 26 - 5)
= 56 . 59 chia hết cho 59
e) 3n+2 - 2n+2 + 3n - 2n Bạn viết sai nên mik sửa như này nha)
= 3n . 32 - 2n . 22 + 3n - 2n
= ( 3n . 32 + 3n) - (2n . 22 + 2n )
= 3n( 32 + 1) - 2n ( 22 + 1)
= 3n . 10 - 2n . 5
Ta thấy 10 chia hết cho 10 nên 3n . 10 chia hết cho 10 (1)
2 . 5 chia hết cho 10 nên 2n . 5 chia hết cho 10 (2)
Từ (1) và (2) => 3n . 10 - 2n .5 chia hết cho 10 với mọi n thuộc N*
vậy.......
f) 817 - 279 - 913
= (34)7 - ( 33)9 - (32)13
= 328 - 327 - 326
(đến đây làm tương tự ý a với ý b nhé)
Mik thấy lần sau nếu ý nào k làm đc bạn mới hỏi nhé hoặc k biết làm hết thì hỏi từng ý 1 thôi chứ bn hỏi nhiều như này người ta ngại trả lời lắm, mik cũng ngại nữa.
Nãy giờ mik viết mỏi tay mỏi mắt lắm rồi bn nhớ k cho mik nhé!!!
Bài 1 Bài này sai đề bạn nhé!!!!
Bài 2:
a) 74n = (74)n =2401n
Mà 2401n luôn có tận cùng bằng 1
\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5
b)34n + 1 = (34)n . 3 = 81n . 3
Mà (......1)n luôn có tận cùng là 1
\(\Rightarrow\)(......1)n .3 tận cùng là 3
\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5
c)Câu này hình như sai đề bạn nhé!!!
d)92n + 1 = (92)n . 9 = 81n .9
Mà 81n luôn có tận cùng là 1
\(\Rightarrow\) 81n . 9 có tận cùng là 9
\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10
Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!
a, Vì \(\hept{\begin{cases}120a⋮12\\36b⋮12\end{cases}\Rightarrow120a+36b⋮12}\)
b, 57 - 56 + 55 = 55(52 - 5 + 1) = 52.21 \(⋮\)21
c, 52003 + 52002 + 52001 = 52001(52+5+1) = 52001.31 \(⋮\)31
d, 1019 + 1018 + 1017 = 1016(103+102+10) = 1016.1110 = 1016.2.555 \(⋮\)555