Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=đền bài
Ta có:2222 +4 hia hết cho 7 suy ra 2222=-4 (mod7)
suy ra :2222\(^{55555}\)=(-4)\(^{5555}\)(mod7) 55555-4 chia hết cho 7 suy ra 5555=4(mod7)
suy ra 55555\(^{2222}\)=4\(^{2222}\)(mod7)
suy ra 2222\(^{55555}\)5555\(^{2222}\)=(-4)\(^{5555}\)+4\(^{2222}\)(mod7)
mà 4\(^{2222}\)=(-4)\(^{2222}\) suy ra (-4)\(^{5555}\)+4\(^{2222}\)= tự lm típ nha bn mẹt quá
\(n^2+4n+3=n^2+2.n.2+2^2-1\)
\(=\left(n+2\right)^2-1\)
\(=\left(n+2-1\right).\left(n+2+1\right)\)
\(=\left(n-1\right).\left(n+3\right)⋮8\)
Ta có n2+4n+3=(n+1)(n+3)
Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp
Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2
Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh
24^1917 + 14^1917
=(24+14) (lương liên hợp)
=38(lương liên hợp)
Chia hết cho 19
a có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
22226 đồng dư 1 (mod7)
và 5555=6x925+5
=> 22225555 đồng dư 2222 5 (mod7)
mà 22225 = 2222 2x 22222 x 2222
22222 đồng dư 2 (mod 7) => 2222 5 đồng dư 2x2x2222 (mod 7)
=> 22225555 đồng dư với 5 (mod 7)
Tương tự có 55552222 đông dư 2 (mod 7)
Vậy => 22225555+55552222 đồng dư 5+2=7 (mod 7)
=> 22225555+55552222 đồng dư 0 (mod7)
=>đpcm