\(CMR:5^{2016}+6^{1029}⋮31\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Ta có

\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)

\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)

Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)

Dấu = xảy ra khi x = y = z = 0

Với x = y = z = 0 thì

\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)

\(\Leftrightarrow0=0\)(đúng)

\(\Rightarrow\)ĐPCM

10 tháng 3 2017

Khó vai` ****

3 tháng 2 2020

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có \(a^3+b^3=32\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)

\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

\(\Rightarrow ab=-4\)

Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)

\(\Rightarrow a+b=2=x\)

Thay \(x=2\)vào \(f\left(x\right)\)ta được :

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)

Chúc bạn học tốt !!!

22 tháng 3 2017

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có: a3 + b3 = 32

=> (a + b)3 - 3ab(a + b) = 32 (*)

a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

=> ab = -4

Kết hợp với (*) => (a + b)3 + 12(a + b) = 32

=> a + b = 2 = x

Thay x = 2 vào f(x) ta được:

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)

10 tháng 8 2016

tìm x y z biết

\(\sqrt{2016.x^2+4}+\sqrt{2017y^2+9}=9-\sqrt{2019z^2+25}\)

đăng bài này nè

22 tháng 12 2017

đặt B = 42015 + 42014 + 42013  + ... + 42

4B = 42016 + 42015 + 42014 + ... + 43

4B - B = ( 42016 + 42015 + 42014 + ... + 43 ) - ( 42015 + 42014 + 42013  + ... + 42 )

3B = 42016 - 42

\(\Rightarrow\)B = \(\frac{4^{2016}-4^2}{3}\)hay B = \(\frac{4^{2016}-16}{3}\)

\(\Rightarrow\)A = 75 . ( \(\frac{4^{2016}-16}{3}\)+ 5 ) + 25

A = 75 . ( \(\frac{4^{2016}-16}{3}\)\(\frac{15}{3}\)) + 25

A = 75 . ( \(\frac{4^{2016}-1}{3}\)) + 25

A = 25 . ( 3 . \(\frac{4^{2016}-1}{3}\)) + 25

A = 25 . ( 42016 - 1 ) + 25

A = 25 . ( 42016 - 1 + 1 )

A = 25 . 42016 \(⋮\)42016